Объяснение:
обозначим искомые неизвестные через Х и У
Х+У=1 (Первое уравнение линейное)
2Х+У=-4 (Это второе уравнение) Для построения графика найдем пары точек на каждой прямой.
Х+У=1
х=0,0+ у=1, (0,1) х=2,2+ у=1, у=-1 ,(2,-1)
2Х+У=-4
х=0,2*0+ у=-4, (0,-4) х=2, 2*2 + у= --4, у=-8 ,(2,-8)
соединив пары точек получим гарфик. Проверим математически:
Х+У=1
2Х+У=-4 вычтем из второго первое и получим х=-5
У=1-х у=1+5
у=6 (-5,6) пересечение графиков. -5+6=1 , 2*(-5)+6=-4
все правильно.
Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sinn(α)=2nC2nn+2n−11∑k=02n−1(−1)2n−kCkncos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cosn(α)=2nC2nn+2n−11∑k=02n−1Ckncos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sinn(α)=2n−11∑k=02n−1(−1)2n−1−kCknsin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cosn(α)=2n−11∑k=02n−1Ckncos((n−2k)α)