корень 3x^2+5x-2=3x-1
(корень 9-х +х-5)=2
Здесь нет ни чего страшного, возводим обе части уравнений в квадрат
3х^2+5x-2=9x^2-6x+1
6x^2-11x+3=0
D=-11^2-4*6*3=49
x1=11+7/2*6=18/12=1.5
x2=11-7/12=1/3
(корень 9-х +х-5)=2
9-х+2((корень (9-х)(х-5))+х-5=4
4+2((корень (9-х)(х-5))=4
((корень (9-х)(х-5))=4-4=0-возводим обе части уравнений в квадрат
(9-х)(х+5)=0
9х+45-х^2-5x=0
x^2-4x-45=0
D=(-4)^2-4*1*(-45)=196
x1=4+14/2=9
x2=4-14/2=-5-не является корнем данного уравнения
только один корень х=9
корень(9-9)+корень(9-5)=2
корень(0)+корень(4)=2
2+0=2
2=2
корень(9-(-5))+корень((-5)-5)=2
корень(14)+корень(-10)=2-по св-ву квадратного корня х2=-5 не является корнем данного уравнения,по этому только один корень х1=9
Запишем уравнение в виде:
Пусть левая и правая часть равны у. Тогда получим систему:
Рассмотрим каждое уравнение как функцию.
Графически возрастающая и убывающая функция могут пересекаться не более чем в одной точке.
В данном случае, понимая, что и область определения и область значений каждой функции представляют собой все действительные числа можно сказать, что такое пересечение обязательно произойдет.
Таким образом, если найден некоторый корень этого уравнения, то других корней у уравнения нет.
Подберем корень. Удобно начать проверку с "красивых значений". Например, будем выбирать х так, чтобы под знаком корня получался куб некоторого целого числа.
Пусть
, то есть
. Проверим, является ли это число корнем:
Пусть
, то есть
. Проверим, является ли это число корнем:
Пусть
, то есть
. Проверим, является ли это число корнем:
Таким образом, уравнение имеет единственный корень
ответ: 3