По всей видимости, речь идёт о функции у=-5/(1+х^2)
Если это так, то обратим внимание на то, что знаменатель всегда положителен, поэтому значение функции всегда отрицательное.
Далее, вообще верхний предел этой функции равен 0, при х-> +-бесконечности, поэтому максимальное ЦЕЛОЕ значение, которое может принять функция, равно -1.
Вот в принципе и всё, однако для строгости нужно ещё доказать, что она где-то примет это значение. Это просто, так как мин. значение функции -5 , это очевидно, если глянуть на знаменатель. Поэтому область значений функции [-5;0). -1 входит в этот интервал. Всё.
Ну и последнее. В задаче НЕ ТРЕБУЕТСЯ определить при каком значении х достигается указанный максимум и в общем случае это бывает очень трудно, даже невозможно аналитическими методами сделать. У нас же очень простая функция, поэтому в качестве бонуса определим этот х.
-5/(1+х^2)=-1
x^2 = 4, x=+-2
То есть указанного целочисленного максимума функция принимает даже при двух разных значениях аргумента(хотя это было ясно с самого начала, так как функция чётная).
Вот теперь точно всё.
2)5x^2+22x+8=0
D=484-4*5*8=324
x1=(-22-18)/10= -40/10=-4
x2=(-22+18)/10= 0.4
3)(5x+2)^2=(5x-3)(4x+1)
25x^2+20x+4=20x^2+5x-12x-3
5x^2+27x+7=0
D=729-4*5*7=589
корень из дискриминанта не целое число, может быть в задании ошибка?
x1=(-27+V589)/10
x2=(-27-V589)/10
4)х- одна сторона 4/3*х-другая сторона
x^2+(4/3x)^2=25^2
x^2+16/9x^2=625
25/9*x^2=625
x^2=625*9/25=225
x=15
4/3x=15*4/3=20
P=2(20+15)=70
5)x^2-5x+4=0
D=25-16=9 два корня
x1=(5-3)/2=1
x2=(5+3)/2=4
1+4=5
6)3x^2-ax+36=0
по т. Виета
x1+x2= a
x1*x2= 36
x1=-3
-3+x2=a
(-3)*x2=36
x2= -12 второй корень
-3-12=-15