Відповідь:
(5; 33)
Пояснення:
Для нахождения точек пересечения, нужно приравнять два уравнения:
7х - 2 = 6х + 3
7x - 6x = 3 + 2
x = 5
Подставим в любое уравнения:
у = 7 * 5 - 2 = 35 - 2 = 33
Тогда координаты будут (5; 33)
Объяснение:
Задание 1.
1. (x-3)(x+4)<0
-∞__+__-4__-__3__+__+∞
x∈(-4;3).
ответ: В).
2. x²-2x-3≥0
x∈(-∞;-1]U[3;+∞).
Задание 2.
2x²-7x-4≤0
2x²-8x+x-4≤0
2x*(x-4)+(x-4)≤0
(x-4)*(2x+1)≤0
-∞__+__-0,5__-__4__+__+∞
x∈[-0,5;4].
ответ: x=0; x=1; x=2; x=3; x=4.
Задание 3.
{2x²-7x-4≤0 {(x-4)(2x+1)≤0 {x∈[-0,5;4]
{5x-2<x-1 {4x<1 |÷4 x<0,25 {x∈(-∞;0,25) ⇒
ответ: x∈[-0,5;0,25).
Задание 4.
ОДЗ: x+4≠0 x≠-4.
-∞__+__-4__-__3__+__+∞
x∈(-4;3].
ответ: x∈(-4;3].
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
ответ: 7*х-2=6*х+3⇒х=3+2=5, тогда у=7*5-2=35-2=33. Искомые координаты (5;33).
Объяснение: