М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ladytka4ewa201
ladytka4ewa201
15.07.2021 14:12 •  Алгебра

Найдите все значения переменной, при которых квадратный
трехчлен:
а) 2x2 – 7х + 6 принимает положительные значения;
б) –3х – х – 12 принимает отрицательные значения.​

👇
Ответ:
andreybalashov
andreybalashov
15.07.2021
Давайте решим задачу поочередно:

а) Нам нужно найти все значения переменной х, при которых квадратный трехчлен 2x^2 - 7x + 6 принимает положительные значения.

1. Для начала, давайте найдем вершину параболы, заданной этим квадратным трехчленом. Формула для нахождения вершины параболы имеет вид x = -b/(2a), где а и b - коэффициенты перед x^2 и x соответственно.

В нашем случае, a = 2, b = -7. Подставляя значения в формулу, получим x = -(-7)/(2*2), что равно x = 7/4.

2. Теперь мы знаем, что вершина параболы находится в точке с координатами (7/4, y), где нам нужно найти значения y, для которых квадратный трехчлен принимает положительные значения.

3. От вершины параболы, квадратный трехчлен будет принимать положительные значения либо при x < 7/4, либо при x > 7/4. Это следует из того, что парабола ветвями вверх.

4. Для нахождения конкретных интервалов значений x, при которых квадратный трехчлен принимает положительные значения, мы можем рассмотреть знаки коэффициентов перед x в разных областях.

В нашем случае, a = 2 и b = -7. Так как а > 0, то знаки коэффициентов меняются при переходе через вершину параболы. Это означает, что квадратный трехчлен принимает положительные значения при x < 7/4 и при x > 7/4.

5. Итак, конечный ответ на задачу - все значения переменной x, при которых квадратный трехчлен 2x^2 - 7x + 6 принимает положительные значения, это x < 7/4 и x > 7/4.

б) Теперь перейдем ко второму вопросу: найти все значения переменной x, при которых квадратный трехчлен -3x - x - 12 принимает отрицательные значения.

1. Снова начнем с поиска вершины параболы. В этом случае, у нас есть только один член со знаком минус перед x^2, поэтому a = -1, b = -3.

Подставляя значения в формулу, получим x = -(-3)/(2*(-1)), что равно x = -3/(-2), что равно x = 3/2.

2. Теперь знаем координаты вершины параболы: (3/2, y).

3. Так как у нас отрицательный коэффициент при x^2, парабола этого квадратного трехчлена ветвями вниз.

4. Поэтому для того чтобы определить значения x, при которых квадратный трехчлен принимает отрицательные значения, мы можем рассмотреть знаки коэффициентов перед x в разных областях.

В нашем случае, a = -1 и b = -3. Так как а < 0, то знаки коэффициентов меняются при переходе через вершину параболы. Это означает, что квадратный трехчлен принимает отрицательные значения при x < 3/2 и при x > 3/2.

5. Итак, конечный ответ на этот вопрос - все значения переменной x, при которых квадратный трехчлен -3x - x - 12 принимает отрицательные значения, это x < 3/2 и x > 3/2.

Вот и все! Надеюсь, что ответ был понятен и содержал достаточно деталей для понимания задачи. Если остались еще вопросы, не стесняйтесь задавать!
4,7(27 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ