Берем производную:
y' = 10x
10x = 0
x = 0
Смотрим как ведет себя производная в районе этой точки
При x < 0 y' < 0 => исходная функция убывает на интервале (-бесконечность;0)
При x > 0 y' > 0 => исходная функция возрастает на интервале (0;+бесконечность)
Это значит, что наименьшее значение на отрезке [-1;2] функция достигает при x = 0, то есть y(0)=15 - наименьшее значение
Свое наибольшее значение функция достигает на одном из концов отрезка:
y(-1) = 20
y(2)=35 - наибольшее значение функции на отрезке [-1;2\
Объяснение:
6+24=30 мин. = 1/2 часа
Экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию.
Оба они проехали одинаковое расстояние, поэтому можно записать
1) (1/2)*х=(6/15)*у
Далее запишем формулу при уменьшении скорости автобуса в 2 раза.
За 6 мин. = 1/10 часа автобус проедет
(х/2)*(1/10) = х/20 км
За время t до встречи с экспрессом автобус проедет
(x/2)*t=xt/2 км
Экспресс за время t проедет yt км, можно записать:
2) (x/20)+(xt/2)=yt
Из этой формулы выразим t:
(x+10xt)/20=yt
x+10xt=20yt
x=20yt-10xt
x=t(20y-10x)
3) t=x/(20y-10x)
Теперь из формулы 1) выразим х:
x=12y/15
и подставим в формулу 3)
или 4 минуты
ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.