Объяснение:
Сначала построим график функции y=x² (график этой функции – это парабола). Для этого достаточно определить 3 точки:
| x | -1 | 0 | 1 |
| y | 1 | 0 | 1 |
Для построения графиков функций y=x²-2 и y=x²+2 воспользуемся свойством (см. рисунок):
График y=f(x)+a получается из графика функции y=f(x) параллельным переносом последнего вдоль оси ординат на a единиц вверх, если a>0, и на |a| единиц вниз, если a<0.
а) Область определения функции y=x²-2: D(y)=(-∞; +∞),
Множество значений функции y=x²-2: E(y)=[-2; +∞).
b) Область определения функции y=x²+2: D(y)=(-∞; +∞),
Множество значений функции y=x²+2: E(y)=[2; +∞).
1) (х+3)⁴ - 13(х+3)² + 36 = 0
проведемо заміну (х+3)² = t
t² - 13t + 36 = 0
знайдемо дискримінат D=169-144=25
√D = √25 = 5
t1=(13+5)/2=18/2=9
t2=(13-5)/2=8/2=4
проведемо зворотню заміну
(х+3)²=9
х²+6х+9=9
х²+6х=0
х(х+6)=0
х=0
х=0х=-6
(х+3)²=4
х²+6х+9=4
х²+6х+5=0
D=36-20=16
√D = √16 = 4
x1=(-6+4)/2=-1
x2=(-6-4)/2=-5
x1=-6, x2=-5, x3=-1, x4=0
2) (x²-9)² - 8(x²-9) + 7 = 0
проведемо заміну (х²-9) = t
t²-8t+7=0
D=64-28=36
√D = √36 = 6
t1=(8+6)/2=7
t2=(8-6)/2=1
проведемо зворотню заміну
х²-9=7
х²=16
х=±4
х²-9=1
х²=10
х=±√10
х1=-4, х2=-√10, х3=√10, х4=4
3) (2х²+3х)² -7(2х²+3х) + 10=0
проведемо заміну (2х²+3х) = t
t²-7t+10=0
D=49-40=9
√9 = 3
t1=(7+3)/2=5
t2=(7-3)/2=2
проведемо зворотню заміну
2х²+3х=5
2х²+3х-5=0
D=9+40=49
√49 = 7
x1=(-3+7)/4=1
x2=(-3-7)/4=-10/4=-5/2=-2,5
2x²+3x=2
2x²+3x-2=0
D=9+16=25
√25 = 5
x1=(-3+5)/4=2/4=1/2=0,5
x2=(-3-5)/4=-8/4=-2
x1=-2,5, x2=-2, x3=0,5, x4=1
ВІДПОВІДЬ:1) x1=-6, x2=-5, x3=-1, x4=0
2) х1=-4, х2=-√10, х3=√10, х4=4
3) x1=-2,5, x2=-2, x3=0,5, x4=1
ответ
a= 6,4 вот ответ