Допустимые значения переменной "х" - это те значения, которые брать можно. А что значит: можно? Когда говорят про допустимые значения переменной "х", то имеют в виду такие значения, при которых данный пример решается ( можно вычислить ответ. И мы должны помнить, что иногда действия выполнить нельзя (делить на 0 нельзя и т.д.)) а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у" ответ: у - любое б)25/(у - 9) В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя. ответ: у ≠ 9 в) (у² +1)/(у² -2у) И здесь есть деление. посмотрим когда знаменатель = 0 у² - 2у = 0 у(у -2) = 0 у = 0 или у - 2 = 0 у = 2 ответ: у ≠ 0 ; у ≠ 2
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у"
ответ: у - любое
б)25/(у - 9)
В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя.
ответ: у ≠ 9
в) (у² +1)/(у² -2у)
И здесь есть деление.
посмотрим когда знаменатель = 0
у² - 2у = 0
у(у -2) = 0
у = 0 или у - 2 = 0
у = 2
ответ: у ≠ 0 ; у ≠ 2