1)Решение системы уравнений (-1; 10);
2)Решение системы уравнений (4; -1)
Объяснение:
Решите систему уравнений методом сложения:
1)y-6x=16
4y+6x=34
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3x-4y=16
-4у=16-3*4
-4у=16-12
-4у=4
у=4/-4
у= -1
Решение системы уравнений (4; -1)
Пусть х руб. - цена детского билета, у руб. - цена взрослого билета. Составим систему уравнений по условию задачи:
{2х + у = 315
{3х + 2у = 565
- - - - - - - - - - - -
Вычтем из второго уравнения первое:
(3х - 2х) + (2у - у) = 565 - 315
х + у = 250
у = 250 - х
- - - - - - - - - - - -
Подставим значение у в любое уравнение системы
2х + 250 - х = 315 3х + 2 · (250 - х) = 565
2х - х = 315 - 250 3х + 500 - 2х = 565
х = 65 3х - 2х = 565 - 500
х = 65
- - - - - - - - - - - -
у = 250 - 65
у = 185
ответ: детский билет стоит 65 рублей,
а взрослый билет стоит 185 рублей.
Проверка:
2 · 65 + 1 · 185 = 130 + 185 = 315 руб. - заплатила первая семья
3 · 65 + 2 · 185 = 195 + 370 = 565 руб. - заплатила вторая семья
1)а)3(х-2)(х+2)
б) b(x-3)(x+3)
в)2b(5-a)(5+a)
г)2с(х-1)(х+1)