М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Анон5сен
Анон5сен
03.12.2020 01:49 •  Алгебра

1,69x^2-1,96y^8
Представьте в виде произведения

👇
Ответ:
берсик7
берсик7
03.12.2020

1,69x^2-1,96y^8 = (1,3x - 1,4y^4)(1,3x + 1,4y^4)

4,5(60 оценок)
Открыть все ответы
Ответ:
sapesalex
sapesalex
03.12.2020

#1

а)

 {(y^{10})}^{6} \times { {(y}^{5})}^{5} \times ( { {(y}^{3})}^{2} = \\ = {y}^{60} \times {y}^{25} \times {y}^{6} = {y}^{91}

б)

 {27}^{3} \times {3}^{6} \times {81}^{4} = {3}^{9} \times {3}^{6} \times {3}^{16} = \\ = {3}^{31}

в)

( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y} )^{4} \times ( \frac{x + y}{x - y} )^{11} = \\ = ( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y})^{4} \times ( \frac{x - y}{x + y})^{ - 11} = \\ = ( \frac{x - y}{x + y})^{ - 5} \div ( \frac{x + y}{x - y} )^{4} = \\ = {( \frac{x + y}{x - y})}^{5} \div ( \frac{x + y}{x - y} )^{4} = \\ = \frac{x + y}{x - y}

г)

 {8}^{9} \div 16^{3} \times {128}^{3} \div {64}^{2} = {2}^{27} \div {2}^{12} \times {2}^{21} \div {2}^{12} = \\ = {2}^{24}

4,6(10 оценок)
Ответ:
alekseyovsyann
alekseyovsyann
03.12.2020

1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.

Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.

А значит ответ нет.

2) Заметим, что искомая сумма a_1+a_2+...+a_1a_2...a_{10}=(a_1+1)(a_2+1)...(a_{10}+1)-1.

И правда. Пусть P(k) - сумма всех комбинаций по 1 ... по k элементов. Тогда P(k+1)=a_1+...+a_k+a_1a_2+...+a_1...a_k+a_{k+1}(1+a_1+...+a_k+a_1a_2+...+a_1...a_k)=(a_{k+1}+1)(a_1+...+a_k+a_1a_2+...+a_1...a_k)+a_{k+1}=(a_{k+1}+1)(P(k)+1)-1\\ P(1)=a_1=(a_1+1)-1

(a_1+1)(a_2+1)...(a_{10}+1)-1

Т.к. числа отрицательны, то a_i+1\leq 0 \:\forall i

Если хотя бы одно из a_i=-1, вся сумма равна -1.

В остальных случаях a_i+1\leq -1 - всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что (a_1+1)(a_2+1)...(a_{10}+1).

А тогда сумма могла равняться только -1

4,7(33 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ