Дано уравнение 3x⁴ + 10x³ +6x² + 10x +3 =0.
Попытаемся найти корень уравнения среди множителей свободного члена(1; -1; 3; -3). Подставив эти значения в уравнение, находим,что
х = -3 это корень уравнения.
Разделим заданное уравнение на (х + 3).
3x⁴ + 10x³ +6x² + 10x +3| x + 3
3x⁴ + 9x³ 3x³ + x² + 3x + 1
x³ + 6x²
x³ + 3x²
3x² + 10x
3x² + 9x
x + 3
x + 3
0.
Полученный результат 3x³ + x² + 3x + 1 перекомпануем:
(3x³ + 3x) + (x² + 1) = 3x(x² + 1) + (x² + 1) = (3x + 1)(x² + 1).
Таким образом, левую часть исходного уравнения можно представить в виде произведения : (x + 3)(3x + 1)(x² + 1) = 0.
Отсюда видим, что это уравнение имеет 2 очевидных корня:
х = -3 и х = -1/3. Последний множитель не может быть равен нулю.
Тогда ответ: произведение корней равно -3*(-1/3) = 1.
Пусть рабочие по плану делали в день а деталей, и могли выполнить план за д дней. Но изготавливая по (а + 4) детали в день сократили время до (д - 1) дней.
Составим равенства:
а * д = 369 (дет); (1)
(а + 4) * (д - 1) = 369: а * д + 4 * д - 1 * а - 4 = 369; заменим из (1) а * д = 369 во втором равенстве:
360 + 4 * д - а - 4 = 369; 4 * д - а = 4; а = 4 * д - 4;
Вставим в (1) полученное равенство а = 4 * д - 4;
(4 * д - 4) * д = 369; (д - 1) * д = 369/4 = 90;
д^2 - д - 90 = 0. д1,2 = 1/2 +- √1/4 + 90 = 1/2 +- √361/4 = (1 +19)/2 = 10 дней. д - 1 = 9 дней
а = 4 * 10 - 4 = 36 (дет). 36 + 4 = 40 дет.