М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lapsy
Lapsy
13.05.2020 08:17 •  Алгебра

На рисунке 47, а,б,в изображён график функции у=ах²+bx+c. Определите знак: 1) коэффициента а; 2) Дискриминанта D​

👇
Ответ:
chernoglazka970
chernoglazka970
13.05.2020

Коэффицент примерно 3

Дискриминант примерно 4

4,6(11 оценок)
Открыть все ответы
Ответ:
chapa00
chapa00
13.05.2020
Інструкція         Нaйті область визначення - це перше, що слід робити при роботі з функціями. Це безліч чисел, якому належить аргумент функції, з накладенням деяких обмежень, які випливають з використання в її вираженні певних математичних конструкцій, наприклад, квадратного кореня, дробу, логарифма і т.д.         Як правило, всі ці структури можна віднести до шести основних видів і їх всіляких комбінацій. Потрібно вирішити одне або кілька нерівностей, щоб визначити точки, в яких функція не може існувати.         Степенева функція з показником ступеня у вигляді дробу з парних знаменником

Це функція виду u ^ (m / n). Очевидно, що подкоренное вираження не може бути негативним, отже, потрібно вирішити нерівність u ≥ 0.

Приклад 1: у = √ (2 • х - 10).

Рішення: складіть нерівність 2 • х - 10 ≥ 0 → х ≥ 5. Область визначення - інтервал [5; + ∞). При х

        Логарифмічна функція виду log_a (u)

В даному випадку нерівність буде суворим u> 0, оскільки вираз під знаком логарифма не може бути менше нуля.

Приклад 2: у = log_3 (х - 9).

Рішення: х - 9> 0 → х> 9 → (9; + ∞).

        Дріб виду u (х) / v (х)

Очевидно, що знаменник дробу не може звертатися в нуль, значить, критичні точки можна знайти з рівності v (х) = 0.

Приклад 3: у = 3 • х ² - 3 / (х ³ + 8). 
Рішення: х ³ + 8 = 0 → х ³ = -8 → х = -2 → (- ∞; -2) U (-2; + ∞).

        Тригонометричні функції tg u і ctg u

Знайдіть обмеження з нерівності виду х ≠ π / 2 + π • k.

Приклад 4: у = tg (х / 2). 
Рішення: х / 2 ≠ π / 2 + π • k → х ≠ π • (1 + 2 • k).

        Тригонометричні функції arcsin u і arcсos u

Вирішити двостороннє нерівність -1 ≤ u ≤ 1.

Приклад 5: у = arcsin 4 • х. 
Рішення: -1 ≤ 4 • х ≤ 1 → -1 / 4 ≤ х ≤ 1/4.

        Показово-статечні функції виду u (х) ^ v (х)

Область визначення має обмеження у вигляді u> 0.

Приклад 6: у = (х ³ + 125) ^ sinх. 
Рішення: х ³ + 125> 0 → х> -5 → (-5; + ∞).

4,4(30 оценок)
Ответ:
dasha1895
dasha1895
13.05.2020

1) просто перемножаем скобки и раскрываем, затем приводим подобные и упрощаем:

 а) = x^2y+xy^2-x^3+2x^2y-xy^2+2y^3=2y^3+3x^2y-x^3

 б) = m^2n-mn^2-2m^3-m^2n+2mn^2+n^3= n^3+mn^2-2m^3

 

2) раскрываем левую часть: a(a-2)-8=a^2-2a-8

 приравниваем ее к 0: a^2-2a-8=0. Находим корни: a1=-2, a2=4

 преобразуем левую часть к виду: a(a-2)-8=(a+2)(a-4)

 Возвращаемся к первоначальному: а(а-2)-8=(а+2)(а-4)

                                                       (a+2)(a-4)=(a+2)(a-4), ч.т.д.


Со вторым делаете тоже самое

4,8(85 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ