Объяснение:
1. Найдите значение алгебраической дроби 2х/х22 -1, при х= 1/3
• а) 0,75; б) -0,75 ; в) - ;г) -1,5
2. Найдите значение x, при котором дробь х+2/х-4 не имеет смысла
а)4 б)-2 в) -4 г) нет таких значений
3. Какое из предложенных выражений записано в виде алгебраической дроби?
а)2х/3+х ; б)2/х2+3х в)81х2/13-х ; г)2/3-х
4. Найдите значение выражения , при а= -0,7, в=0,3
а)2,5; б) -2,5; в) 1; г) другой ответ.
5.При каком значении а дробь не определена?
а) 0; б) - ; в) ; г)другой ответ.
6. Найди допустимые значения букв, входящих в дробь а/b
а) любые значения; б)5 возможных значений ; в) любые значения а и b, при b не равным 0 ; г) нет ответа
7.Выберите дробно- рациональные выражения 2х/3+4/7, 2-5х/7,3, 3/х-2
а) нет правильного ответа ; б) 2х/3+4/7 ; в)2-5х/7,3 ; г) 3/х-2
Решение системы уравнений х=1,375
у=0,0625
Объяснение:
Решить методом алгебраического сложения систему уравнений.
10y−7x=−9
10y+x=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -1:
-10у+7х=9
10y+x=2
Складываем уравнения:
-10у+10у+7х+х=9+2
8х=11
х=11/8
х=1,375
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
10y+x=2
10у=2-1,375
10у=0,625
у=0,625/10
у=0,0625
Решение системы уравнений х=1,375
у=0,0625