Төрт сан арифметикалық прогрессия құрайды және олардың ортаңғы мүшелері 10 және 14. Егер ортаңғы мүшелерінің ықти- малдықтары шеткі мүшелерінің ықтималдықтарынан 4 есе артық болса, онда кездейсоқ шаманың үлестірім заңын анықтаңдар.
Сначала упростим. Как видно из тригонометрического круга, который я приложила к ответу, 7π/2 - это 3π+π/2 или 2π+π+π/2 2π-совпадает с углом "0", поэтому его смело можно им заменить, т.е.: 2π+π+π/2=0+π+π/2=π+π/2. Получаем выражение: 20cos(7π/2+a)=20cos(π+π/2+a)=20cos(π+(π/2+a)).
Примечание: Если мы к углам пи или 2пи прибавляем (или отнимаем) какой-то угол, то тригонометрическая функция не меняется (косинус остаётся косинусом, а синус-синусом), а если мы прибавляем (или отнимаем) какой-то угол от углов пи/2 или 3пи/2, то косинус меняется на синус, к примеру:cos(пи/2 + 30°)=косинус во второй четверти меньше нуля-ставим минус и угол пи/2 - поэтому косинус меняем на синус= -sin30°.
В нашем случае прибавляемый угол = π/2+a
Воспользуемся вышеописанными правилами: 20cos(π+(π/2+a)) Как видно из тригонометрического круга, если к пи прибавлять какой-либо угол, то он будет находиться в 3 четверти, где косинус отрицательный, поэтому ставим минус перед нашим выражением. Из примечания также следует: 20cos(π+(π/2+a)) = -20cos(π/2+a)
Теперь разложим косинус как косинус суммы: cos(x+y)=cosx*cosy-sinx*siny
Применим данную формулу для нашего случая: -20cos(π/2+a)=-20*(сosπ/2*cosa-sinπ/2*sina) Опять же из тригонометрического гура видно, что косинус π/2 = 0, поэтому первое слагаемое превращается в ноль, а sinπ/2=1. В связи с этим запишем: -20*(сosπ/2*cosa-sinπ/2*sina)=-20(0-1*sina)=-20*(-sina)=20sina.
Мы знаем, что cosa=-7/25. Из тригонометрической единицы (cos²а+sin²а=1) Найдём sina:sin²а=1-cos²а=1-(-7/25)²=1-49/625=625/625 - 49/625 = (625-49)*625=576/625 значит sina=√(576/625)=24/25.
В итоге получим: 20sina=20*24/25=4*24/5=19,2-это и будет ответ.
Объяснение:
Чтобы не путать русскую букву "З" с цифрой "3" - запишем пример в виде:
R A Z
+
A Z
+ Z
______
4 4 4
1)
Получили, что
Z + Z + Z = 4; 3×Z = * 4
Здесь один вариант: Z = 8: 3×4 = 24
2)
Из разряда единиц переносим двойку в разряд десятков.
Получим:
2 + 2×A = *4
Простым подбором получаем;
A = 1; 2 + 2×1 = 04
A = 6; 2 + 2×6 = 10
То есть если нет переноса в разряд сотен, то
R + 0 = 4; R = 4
Если есть, то:
R + 1 = 4; R = 3.
Возвращаемся к прежним обозначениям.
Получили 2 ответа: