М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksutsydmi
ksutsydmi
12.04.2021 16:32 •  Алгебра

Втечение четверти таня получила следующие. отметки по : одну «2», две «3», четыре «4» и три «5». на сколько среднее арифметическое её отметок отличается от медианы?

👇
Ответ:
artyomortega
artyomortega
12.04.2021

С.А.=(2+3+3+4+4+4+4+5+5+5)/10=3.9

2 3 3 4 4 4 4 5 5 5

      (4+4)/2=4

М: 4

М-С.А.=4-3.9=0.1

ответ: С.А. меньше медианы на 0.1

4,6(23 оценок)
Ответ:
Ʈгiceгatoρѕ
Ʈгiceгatoρѕ
12.04.2021

С.А.=(2+3+3+4+4+4+4+5+5+5)/10=3.9
(4+4)/2=4
М: 4
М-С.А.=4-3.9=0.1
ответ: С.А.< М на 0.1

4,8(72 оценок)
Открыть все ответы
Ответ:

х км/ч - скорость катера по течению реки

у км/ч - скорость катера против течения реки

{3х + 4у = 174

{4х + 5у = 224

- - - - - - - - - -

Вычтем из первого уравнения системы второе

х + у = 50

х = 50 - у

Подставим значение х в любое уравнение системы

3 · (50 - у) + 4у = 174         или         4 · (50 - у) + 5у = 224

150 - 3у + 4у = 174                            200 - 4у + 5у = 224

у = 174 - 150                                      у = 224 - 200

у = 24                                                у = 24          

- - - - - - - - - -

х = 50 - 24

х = 26

ответ: 26 км/ч - скорость катера по течению реки; 24 км/ч - скорость катера против течения реки.      

4,4(75 оценок)
Ответ:
ляятоп
ляятоп
12.04.2021

Перенесем все влево и вынесем за скобки x:

x^3-6x^2-ax=0,\\\\x(x^2-6x-a)=0

Из этого следует, что уравнение всегда имеет хотя бы одно решение - x=0. Задача сводится к тому, чтобы посмотреть, при каких a будут корни у уравнения x^2-6x-a=0 и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.

1) проверим, при каком значении a корнем уравнения x^2-6x-a=0 будет x=0. Подставляем ноль в уравнение: 0-0-a=0\Rightarrow a=0. При a=0 имеем:

x(x^2-6x)=0, \\\\x\cdot x(x-6)=0;\\\\x^2(x-6)=0

Делаем вывод, что при a=0 уравнение имеет два корня: x=0, x=6.

2) при a\neq 0 уравнение x^2-6x-a=0 не может иметь корень x=0. Уравнение - квадратное. Сразу ищем дискриминант: D=(-6)^2-4\cdot1\cdot(-a)=36+4a.

Здесь рассматриваем 3 случая:

2.1. Если D,  то уравнение x^2-6x-a=0 решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.

2.2. Если D=0\Rightarrow 36+4a=0\Rightarrow a=-9, то подставляя вместо параметра -9 в итоге получаем: x^2-6x+9=0, (x-3)^2=0\Rightarrow x=3. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.

2.3. Если D0\Rightarrow 36+4a0\Rightarrow a-9, то уравнение x^2-6x-a=0 имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит a=0, а мы его проверяли отдельно - при a=0 корней будет 2, а не 3, поэтому из неравенства его нужно исключить.

ОТВЕТ: При a уравнение имеет единственный корень; при a=-9 и a=0 уравнение имеет два различных корня; при a\in(-9; 0)\cup(0; +\infty) уравнение имеет три различных корня.

4,4(100 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ