1.а) y=6*0.5+19=3+19=22 б) 1=6x+19 6x=18 x=3 в) 7=-2*6+19=1 - не проходит. 2.а) проведите прямую через точки 0 и точку а(3; 2) б) y=2*1.5-4=-1 3. y=-2x - возьмите точку x (например 2, тогда y=-4) и проведите горизонтальную прямую на координатной плоскости. y=3 - проведите горизонтальную прямую, где значение y=3 4. 47x-37=-13x+23 60x=60 x=1 y=47-37=10 y=-13+23=10 точка пересечения двух графиков функций = а(1; 10) 5. y=3x-7 пусть x=2 и x=3, тогда y=-1 и y=2 a(2; -1) b(3; 2) тогда пусть параллельный график будет с точками o(0; 0) и c(1; 3) тогда y=3x - искомая формула линейной функции
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.