1) Чтобы раскрыть скобки, надо почленно умножить сомножитель который стоит перед скобкой, на каждое число или буквенное (буквенно-цифровое) выражение, которое стоит в скобках, не забывая при этом о знаках: минус на минус даёт плюс; плюс на минус даёт минус; плюс на плюс даёт плюс:
а · (-36+2с-у)= - 36а + 2ас - ау
Здесь мы сначала а умножили на -36 - получилось - 36а;
затем а умножили на 2с - получилось 2 ас,
затем а умножили на -у - получилось - ау.
2) Здесь всё сделали аналогично:
-1,5 · (2х - 4у) = -3х + 6у
3) А здесь после раскрытия скобок привели подобные:
(1-sin^2 x)-3sinx-(cos^2 x - sin^2 x) - 4=0 1-sin^2 x - 3sinx - 1+sin^2 x + sin^2 x - 4= 0 sin^2 x - 3sinx - 4=0 можешь дальше через дискриминант, но здесь и формула a+b+c=0 подходит, поэтому sinx =-1; x=-(π/2)+2πn, n€Z; sinx=-4(нет корней) Уравнение имеет одно решение: x=-(π/2)+2πn, n€Z [-π;π] -π≤ -π/2 + 2πn≤π, n€Z нам необходимо, чтобы по середине остался линии ь n, тогда, во-первых надо избавиться от -π/2, значит к обеим частям прибавляем -π/2, т.е. получится: -π+π/2≤-π/2 + π/2 + 2πn≤π + π/2 -π/2≤2πn≤3π/2. во-вторых, избавимся от 2π, т.е. делим на 2π обе части, получается -1/4≤n≤3/4, n - это какие то целые числа, смотришь, какие целые цисла есть между -1/4 и 3/4, но надо подобрать так, чтобы принадлежало нашему промежутку есть два таких числа это 0 и 1, проверим, подставив в x=-(π/2)+2πn, n€Z Если n=0, то х=-π/2 €[-π/2;π], т.е. подходит Если n=1, то х=-5π/2 это не принадлежит, поэтому промежутку [-π/2;π] принадлежит х=-π/2 Думаю, не ошибся
См. Объяснение.
Объяснение:
1) Чтобы раскрыть скобки, надо почленно умножить сомножитель который стоит перед скобкой, на каждое число или буквенное (буквенно-цифровое) выражение, которое стоит в скобках, не забывая при этом о знаках: минус на минус даёт плюс; плюс на минус даёт минус; плюс на плюс даёт плюс:
а · (-36+2с-у)= - 36а + 2ас - ау
Здесь мы сначала а умножили на -36 - получилось - 36а;
затем а умножили на 2с - получилось 2 ас,
затем а умножили на -у - получилось - ау.
2) Здесь всё сделали аналогично:
-1,5 · (2х - 4у) = -3х + 6у
3) А здесь после раскрытия скобок привели подобные:
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
ПРИМЕЧАНИЕ.
В тетради надо записать только решения:
а · (-36+2с-у)= - 36а + 2ас - ау
-1,5 · (2х - 4у) = -3х + 6у
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
Слова писать не надо, т.к. это - объяснение.