Выражение, стоящее в знаменателе, не может быть равно нулю, так как на 0 делить нельзя. В знаменателе записано произведение двух множителей. Поэтому каждый множитель не может равняться 0 .
Для удобства обозначим скорость автобуса х, а скорость экспресса у. Автобус до места встречи двигался 6+24=30 мин. = 1/2 часа Экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию. Оба они проехали одинаковое расстояние, поэтому можно записать 1) (1/2)*х=(6/15)*у Далее запишем формулу при уменьшении скорости автобуса в 2 раза. За 6 мин. = 1/10 часа автобус проедет (х/2)*(1/10) = х/20 км За время t до встречи с экспрессом автобус проедет (x/2)*t=xt/2 км Экспресс за время t проедет yt км, можно записать: 2) (x/20)+(xt/2)=yt Из этой формулы выразим t: (x+10xt)/20=yt x+10xt=20yt x=20yt-10xt x=t(20y-10x) 3) t=x/(20y-10x) Теперь из формулы 1) выразим х: x=12y/15 и подставим в формулу 3) часа или 4 минуты
ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.
Пусть х кубометров грунта в час может вырыть первый экскаватор, тогда второй экскаватор роет у кубометров в час. За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1) Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325 2х=50 х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений: 6х+6у=330 6×25+6у=330 6у=330-150 6у=180 у=180÷6 у=30 кубометров грунта в час вырывает второй экскаватор. ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
Выражение, стоящее в знаменателе, не может быть равно нулю, так как на 0 делить нельзя. В знаменателе записано произведение двух множителей. Поэтому каждый множитель не может равняться 0 .
Соответственно получим ОДЗ:
.