М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olgavish761
olgavish761
18.04.2023 16:13 •  Алгебра

Разность пятого и третьего членов геометрической прогрессии равна 1200, а разность пятого и четвёртого членов равна 1000 . Найдите сумму пяти первых членов геометрической прогрессии.

👇
Ответ:
aaablaeva
aaablaeva
18.04.2023
Добрый день! Конечно, я помогу вам решить эту задачу.

Для решения задачи, давайте сначала определим формулу для n-го члена геометрической прогрессии:

aₙ = a₁ * r^(n-1),

где aₙ - n-й член прогрессии,
a₁ - первый член прогрессии,
r - знаменатель прогрессии,
n - номер члена прогрессии.

Зная эту формулу, мы можем записать следующие уравнения:

a₅ - a₃ = 1200, (1)
a₅ - a₄ = 1000. (2)

Теперь давайте найдем значения пятого, третьего и четвертого членов прогрессии, используя эти уравнения.

Из уравнения (2) мы можем выразить a₅ через a₄:
a₅ = a₄ + 1000. (3)

Теперь подставим значение a₅ из уравнения (3) в уравнение (1):
a₄ + 1000 - a₃ = 1200. (4)

Далее, мы можем упростить это уравнение:
a₄ - a₃ = 200. (5)

Теперь у нас есть два уравнения о разностях между членами прогрессии. Давайте решим их систему.

Вычтем уравнение (5) из уравнения (1):
(a₅ - a₃) - (a₄ - a₃) = 1200 - 200,
a₅ - a₄ + a₃ - a₃ = 1000,
a₅ - a₄ = 1000. (6)

Мы получили, что a₅ - a₄ = 1000, это равно нашему уравнению (2). Значит, найденные нами значения для a₄ и a₅ являются правильными.

Теперь, зная значения a₄ и a₅, мы можем найти r, заменив их в формулу для n-го члена прогрессии:
a₅ = a₁ * r^4,
a₄ = a₁ * r^3.

Поделим эти уравнения, чтобы избавиться от a₁:
(a₁ * r^4) / (a₁ * r^3) = r,
r = r.

Получается, что знаменатель прогрессии r равен 1.

Теперь, зная a₁ и r, мы можем найти все члены прогрессии:

a₁ = a₅ / r^4,
a₂ = a₁ * r,
a₃ = a₁ * r^2,
a₄ = a₁ * r^3,
a₅ = a₁ * r^4.

Теперь мы можем найти сумму пяти первых членов прогрессии:

S₅ = a₁ + a₂ + a₃ + a₄ + a₅.

Подставим значения членов прогрессии:

S₅ = (a₅ / r^4) + (a₅ / r^3) + (a₅ / r^2) + (a₅ / r) + a₅,
S₅ = a₅ * (1/r^4 + 1/r^3 + 1/r^2 + 1/r + 1).

Мы уже знаем, что r = 1, поэтому:

S₅ = a₅ * (1/1^4 + 1/1^3 + 1/1^2 + 1/1 + 1),
S₅ = a₅ * (1 + 1 + 1 + 1 + 1),
S₅ = a₅ * 5.

Теперь мы можем найти значение a₅, подставив его в формулу:

a₅ = a₄ + 1000,
a₅ = a₁ * r^3 + 1000.

Мы уже знаем, что r = 1, поэтому:

a₅ = a₁ + 1000.

Теперь мы можем найти значение a₅ и подставить его в формулу для S₅:

S₅ = (a₁ + 1000) * 5.

Таким образом, сумма пяти первых членов геометрической прогрессии равна (a₁ + 1000) * 5. Это и будет окончательным ответом.

Пожалуйста, простите, если объяснение оказалось слишком сложным. Если у вас остались вопросы или что-то неясно, пожалуйста, сообщите мне, и я постараюсь объяснить более подробно.
4,5(98 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ