а)Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
Найти координаты точек пересечения параболы
y=-3x²+12 с осями координат.
а)Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
-3x²+12=0
3x²-12=0
х₁,₂=±√144/6
х₁,₂=±12/6
х₁= -2
х₂=2
Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Любой график пересекает ось Оу при х=0.
х=0
y= -3x²+12
у=0+12
у=12
Координаты пересечения параболой оси Оу (0; 12)
Система уравнений:
x + 5y = 7;
3x + 2y = -5.
Выражаем из первого уравнения системы переменную x через у и получаем следующую систему уравнений:
x = 7 - 5y;
3x + 2y = -5.
Теперь подставим во второе уравнение системы вместо x выражение из первого уравнения системы:
x = 7 - 5y;
3(7 - 5y) + 2y = -5.
Переходим к решению второго уравнения системы:
3 * 7 - 3 * 5y + 2y = -5;
21 - 15y + 2y = -5;
-15y + 2y = -5 - 21;
-13y = -26;
y = -26 : (-13);
y = 2.
Система уравнений:
x = 7 - 5y = 7 - 5 * 2 = 7 - 10 = -3;
y = 2.
ответ: (-3; 2).
Объяснение: