М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВалераГущина
ВалераГущина
19.02.2022 06:47 •  Алгебра

Разложите на множители: x^3-2x^2y+xy^2

👇
Ответ:
Котя534
Котя534
19.02.2022

ответ:х(х-у)^2

Объяснение:

4,8(12 оценок)
Открыть все ответы
Ответ:
kupmvik
kupmvik
19.02.2022
Выражение: x^2-x-6=(x-3)(x+2)
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-1)^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-(-1))/(2*1)=(5-(-1))/2=(5+1)/2=6/2=3;x_2=(-√25-(-1))/(2*1)=(-5-(-1))/2=(-5+1)/2=-4/2=-2.
Выражение: x^2+3*x-4=(x-1)(x+4)
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=3^2-4*1*(-4)=9-4*(-4)=9-(-4*4)=9-(-16)=9+16=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-3)/(2*1)=(5-3)/2=2/2=1;x_2=(-√25-3)/(2*1)=(-5-3)/2=-8/2=-4.
Выражение: x^2-8*x+15=(x-5)(x-3)
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-8)^2-4*1*15=64-4*15=64-60=4;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(=√4-(-8))/(2*1)=(2-(-8))/2=(2+8)/2=10/2=5;x_2=(-=√4-(-8))/(2*1)=(-2-(-8))/2=(-2+8)/2=6/2=3.
Выражение: x^2+8*x+12=(x+2)(x+6)
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=8^2-4*1*12=64-4*12=64-48=16;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√16-8)/(2*1)=(4-8)/2=-4/2=-2;x_2=(-√16-8)/(2*1)=(-4-8)/2=-12/2=-6.
4,5(79 оценок)
Ответ:

Воспользуемся формулой |x| = \sqrt{x^{2} } :

\sqrt{(2^{x} -2)^{2} } =\sqrt{a^{2} } \\

Возведем обе части в квадрат:

(\sqrt{(2^{x} -2)^{2} })^{2} =(\sqrt{a^{2} })^{2} \\ (2^{x} -2)^{2} =a^{2} \\(2^{x} -2)^{2}-a^{2} =0\\(2^{x} -2-a)(2^{x} -2+a) = 0\\

Рассмотрим 3 случая :

1.

2^{x} -2-a = 0\\ 2^{x} -2+a \neq 0\\

----------------------

2^{x}= 2+a

Мы знаем, что любое число(кроме 0) в любой степени больше нуля, то есть 2+а > 0 => a>-2

2^{x} \neq 2-a\\

Так же 2-а уже должно быть меньше или равно нулю:

2-a ≤ 0 => a ≥ 2

Найдем пересечение => a ≥ 2

2.

По тому же принципу :

2^{x} -2-a \neq 0 = 2^{x} \neq 2+a = a\leq -2\\2^{x} -2+a=0 = 2^{x}=2-a= a< 2

Найдем пересечение => a ≤-2

3.

2^{x} -2-a=2^{x} -2+a\\-a = a\\2a = 0\\a = 0

----------------------------------------------------------------------

Объединим три ответа => a Є (-∞ ; -2] U [2 ; +∞)

ответ : a Є (-∞ ; -2] U [2 ; +∞) U {0}

P.S это одно из возможных решений, возможно вы найдете и по проще)

4,8(11 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ