Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
Уравнение:
(В+14)/(В+3)=(В+7)/В+37/88
Проблема в том, что оно не решается в целых числах.
Если домножить на 88*B*(B+3), то получится
88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3)
88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B
88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B
Вычитаем 88*B^2 слева и справа и умножаем числа
1232*B = 37*B^2 + 880*B + 111*B + 1848
37*B^2 - 241*B + 1848 = 0
А теперь находим дискриминант
D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0
Решений нет.
Но даже если мы что-то напутали, и D = +215423, или
D = 58081 + 273504 = 331585
Все равно это не квадрат целого числа, и B иррационально.