6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
В случае , когда выражение 3а больше (2а+1) в 2 раза ; или (2а+1) меньше 3а в 2 раза.
3а / (2а + 1 ) = 2
3а = 2(2а + 1)
3а = 4а + 2
3а - 4а = 2
-а = 2
а = - 2
(3 * (-2) ) / (2 * (-2) + 1) = - 6/(-3) = 2 (раза)
2) В случае , если (2а+1) больше 3а в 2 раза , или 3а меньше (2а+1) в 2 раза.
(2а + 1) / 3а = 2
2а + 1= 2*3а
2а + 1 = 6а
2а - 6а = - 1
- 4а = - 1
4а = 1
а = 1/4
а = 0,25
(2*0,25+1)/(3*0,25) = 1,5/0,75=2 (раза)
ответ : при а₁ = -2 , а₂= 0,25 выражения 3а и (2а+1) отличаются в 2 раза.