неравенство не имеет ршений, если дискриминант квадратного уравнения
x^2-(a+2)x+(a+1) = 0 будут отрицательным.
D= (a+2)^2-4(a=1)=a^2 + 4a + 4 - 4a - 4 = a^2
поскольку квадрат числа всегда величина неотрицательная, то получается, что при любом а неравенство будет иметь решения.
Действительно, х1 = (а+2+а)/2 =а + 1, х2 = (а+2-а)/2 = 1
Корень х2 = 1 имеет место при любом а, т.е квадратная парабола, являющаяся графиком функции, заданной в левой части неравенства, всегда пересекает ось х, независимо от того, какое а мы возьмём.
ответ: неравенство всегда имеет решение
sin10*sin30*sin50*sin70 = sin[0,5(40-20)] * sin[0,5(40+20)] *sin[0,5(120-20)] * *sin[0,5(120+20)] = 0.5(cos20-cos40) * 0.5(cos20-cos120) = 0.25[(cos20)^2-cos40 * *cos20 - cos20 * cos120 +cos40 * cos120] = 0.25[(cos20)^2 - 0.5(cos20+cos60) + +0.5cos20 - 0.5cos40] = 0.25[(cos20)^2 - 0.5cos20 - 0.25 + 0.5cos20 - 0.5cos40] =
=0.25[(cos20)^2 - 0.5cos40 - 0.25] =?
(cos20)^2 = 0.5 + 0.5cos40 отсюда (cos20)^2 - 0.5cos40 =0.5
Продолжим преобразования:
0.25[(cos20)^2 - 0.5cos40 - 0.25] = 0.25[0.5 - 0.25] =0,25 * 0,25 =0,0625 =1/16
ответ: 1/16 или 0,0625