ответ:Нам нужно разложить на множители выражение ac - ad - 5bc + 5bd для этого сгруппируем попарно первое со вторым и третье с четвертым слагаемые и вынесем общий множитель за скобки.
ac - ad - 5bc + 5bd = (ac - ad) - (5bc - 5bd);
Из первой скобки вынесем a, а из второй 5b, получим:
(ac - ad) - (5bc - 5bd) = a(c - d) - 5b(c - d).
Рассмотрим полученное выражение. В результате мы получили разность двух выражений каждое из которых содержит скобку (c - d), вынесем ее как общий множитель.
a(c - d) - 5b(c - d) = (с - d)(a - 5b).
ответ: (с - d)(a - 5b).
Объяснение:
1)1 по основному тригонометрическому тождеству представим как sin²x + cos²x:
cos²x + sin x cos x - sin²x - cos²x = 0
sinx cos x - sin²x = 0
Данное уравнение не является однородным, поэтому делить на cos²x нельзя(точнее можно, но не нужно). Разложим левую часть уравнения на множители:
sin x(cos x - sin x) = 0
sin x = 0 или cosx - sin x = 0
Решаем первое уравнение:
x = πn, n∈Z
Второе уравнение - однородное первой степени. Делим его почленно на cos x, поскольку он не может быть нулевым:
1 - tg x = 0
tg x = 1
x = π/4 + πk, k ∈ Z
Всё, эти два решения и есть корни данного уравнения.
2)Здесь судя по всему надо ввести замену. Пусть tg x = t, тогда выходим на кубическое уравнение:
t³ + t² - 3t - 3 = 0
(t³ + t²) - (3t + 3) = 0
t²(t + 1) - 3(t+1) = 0
(t+1)(t² - 3) = 0
t+1 = 0 или t² - 3 = 0
t = -1 t² = 3
t1 = √3; t2 = -√3
Тогда получаем совокупонсть из трёх уравнений:
tg x = -1 или tg x = √3 или tg x = -√3
x = -π/4 + πn, n∈Z x = π/3 + πk, k∈Z x = -π/3 + πm, m∈Z