БИНОМ НЬЮТОНА, математическое правило разложения алгебраического выражения (а+b)n в ряд степеней численных значений х и у (где n - положительное число). При n-2 разложение выглядит таким образом: (х+у)2=х2+2ху+у2.
Объяснение:
Бином Ньютона — формула разложения произвольной натуральной степени двучлена (a+b)^n в многочлен. Каждый из нас знает наизусть формулы «квадрата суммы» (a+b)^2 и «куба суммы» (a+b)^3 , но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности.
Обозначим через х первое число из данной последовательности четырех последовательных четных натуральных чисел.
Тогда второе, третье и четвертое числа из данной последовательности будут равны соответственно х + 2, х + 4 и х + 6.
Найдем сумму данных четырех чисел:
х + х + 2 + х + 4 + х + 6 = 4 * х + 2 + 4 + 6 = 4 * х + 12 = 4 * (х + 3).
Из полученного представления суммы данных четырех чисел следует, что эта сумма делится на 4.
Следовательно, сумма четырех последовательных четных натуральных чисел всегда делится нацело на 4.
Объяснение:
Объяснение:
1. Постройте график функции y=2x-1. По графику найдите: а) значения функции при значениях аргумента, равных -2;0;3; б)
значения аргумента, при которых значения функции равны 3;7; в) найдите точку пересечения данной прямой с прямой, заданной уравнением x=4
Функция у = 2х - 1 является линейной функцией, то есть графиком данной функции будет прямая. Для построения прямой достаточно двух точек.
х = 1; у = 2 * 1 - 1 = 1. Точка (1; 1).
х = 5; у = 2 * 5 - 1 = 9. Точка (5; 9).
Чертим координатную плоскость, ставим точки, проводим прямую.
а) Значения функции - это значение у, значение аргумента - это значение х. Находим точки -2, 0 и 3 на оси х, мысленно проводим вертикальную прямую и определяем координату у в точке на прямой.
х = -2; у = -5.
х = 0; у = -1.
х = 3; у = 5.
б) Находим точки 3 и 7 на оси у, мысленно проводим горизонтальную прямую, определяем координату х на прямой.
у = 3; х = 2, точка (3; 2).
у = 7; х = 4.
в) Прямая х = 4 - это вертикальная прямая, пересекающая ось х в точке 4. Чертим данную прямую, определяем координаты точки пересечения. Точка (4; 7)