Формула объема призмы: Площадь основания (Sосн.) умножить на высоту (h), тобишь:
Vпризмы=Sосн.*h
Площадь основания правильного шестиугольника равна: три корня из трех на два умножить на сторону в квадрате(a), тобишь:
Sосн.=3√3/2*a^2
Из текста задачи ясно, что объем не изменился. Получаем: V1=V2, а сторона основания второй призмы в два раза меньше, и обозначив сторону первой за a, сторону второй обозначим через a/2.
Приравниванием формулы объема первой и второй призмы,обозначаем искомую высоту через x и получаем уравнение:
3√3/2*a^2*24=3√3/2*a^2/4*x
Делим обе части уравнения на 3√3/2 и получаем:
a^2*24=a^2/4*x
Чтобы избавится от знаменателя во второй части домнажаем обе части на 4:
96*a^2=a^2x
x=96a^2/a^2
В результате a^2 сокращается и остается 96:
x=96.
ответ:96 см.
(х-2)(х+3)/(х-4)>=0
x^2+3x-2x-6/x-4 >=0
x^2-x-6/x-4 >=0
x^2-x-6=0
d=1+24=25=5^2
x1=1+5/2=3
x2=1-5/2=-2
x^2-x-6=(x-3)(x+2)>=0
x принадлежит (-бесконечности: -3] в обьединении [2;+бесконечности)
х принадлежит (4:+бесконечности)
обьединяем
х принадлежит (4:+бесконечности)
х(х+1)(х-1)/(x+2)(х-2)>=0
(x^2+x)(x-1)/(x+2)(х-2)>=0
x^3-x^2+x^2-x/(x+2)(х-2)>=0
x(x^2-1)/(x+2)(х-2)>=0
x принадлежит (-бесконечности: -1] в обьединении [1:+бесконечности)
x принадлежит(-бесконечности: -2) в обьединении (2:+бесконечности)
обьединяем
х принадлежит(-2:-1] в обьединении [1;2)
квадратные скобки значат что значение включается в промежуток, круглые не включают
x-y=2
x-y²=2
x=2+y
2+y-y²=2
x=2+y
-y²+y+2-2=0
x=2+y
-y²+y=0
-y²+y=0 | :(-1)
y²-y=0
y1=0, y2=1
x=2+y
y1=0,y2=1
x1=2+0=2, x2=2+1=3
y1=0,y2=1
x1=2,x2=3
y1=0,y2=1
(2,0);(3,1)