Объяснение:
Во-первых, эти два примера - одинаковые.
Вы поменяли а на х и cos a = -1/√3 = -√3/3
Отсюда cos^2 a = 1/3
Во-вторых, есть такое выражение для произведения синусов
sin x*sin x = 1/2*(cos(x-y) - cos(x+y))
Подставляем
cos 8a + cos 6a + 2sin 5a*sin 3a = cos 8a+cos 6a+2/2(cos 2a-cos 8a) =
= cos 8a + cos 6a + cos 2a - cos 8a = cos 2a + cos 6a
Еще есть выражение для косинуса тройного аргумента
cos 3x = cos(x+2x) = cos x*cos 2x - sin x*sin 2x =
= cos x*cos 2x - sin x*2sin x*cos x = cos x*(2cos^2 x - 1 - 2sin^2 x) =
= cos x*(2cos^2 x - 1 - 2 + 2cos^2 x) = cos x*(4cos^2 x - 3)
Подставляем
cos 2a + cos 6a = cos 2a + cos 2a*(4cos^2 (2a) - 3) =
= cos 2a*(4cos^2 (2a) - 2) = 2cos 2a*(2cos^2 2a - 1) =
= 2*(2cos^2 a - 1)(2(2cos^2 a - 1)^2 - 1) =
= 2*(2/3 - 1)(2*(2/3 - 1)^2 - 1) = 2(-1/3)(2*(1/3)^2 - 1) =
= 2(-1/3)(2*1/9 - 1) = 2(-1/3)(-7/9) = 14/27
Подробнее - на -
x^4-4x^2=0
х1=0; х2=2; х3=-2;
Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0
f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0
Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2)
теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум
-2^0.5 0 2^0.5
---*---о*о*---о*--
-2 -1 1 2
x=0 => y= 0
x=-2^0.5 => y= -4
x=2^0.5 => y= -4
x=-2 => y= 0
x=-1 => y=-3
x=1 => y=-3
x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум.
Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум.
Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено
Точки пересечения с осью Х
х1=0; х2=2; х3=-2;
Минимум
(-2^0.5;-4) и (2^0.5;-4)
Максимум
(0;0)