2х+8х-2х-8=0;
8x=8 :8;
x=1
ответ:1
1.
то что показано как решать неэффективно
x² + y² + 2y - 9 = 0
3x - y - 1 = 0
y² + 2y + 1 + x² - 10 = 0 (1)
y = 3x - 1 (2)
(y + 1)² + x² = 10 и подставляем из (2)
(3x - 1 + 1)² + x² = 10
9x² + x² = 10
x² = 1
x = ± 1
x = 1 y = 3x - 1 = 2
x = -1 y=3x - 1 = -4
ответ (1, 2) (-1, -4)
2)
x² - 4x - 5 < 0
3x - 9 > 0
разложим на множители x² - 4x - 5 = (x - 5)(x + 1)
D = 16 + 20 = 36
x12 = (4 +- 6)/2 = 5 -1
(x + 1)(x - 5) < 0
3(x - 3) > 0
Применяем метод интервалов
(-1) (5)
(3)
x ∈ (-1, 5) ∩ (3, +∞)
ответ x ∈ (3, 5)
3)
подкоренные выражения ≥ 0
x - 3 ≥ 0
x² -7x + 6 ≥ 0
раскладываем второе
D = 49 - 24 = 25
x12 = (7 +- 5)/2 = 6 1
x² -7x + 6 = (x - 1)(x - 6)
Применяем метод интервалов
[1] [6]
[3]
x ∈ {(-∞, 1] U [6, +∞)) ∩ (3, +∞)
ответ x ∈ [6, +∞)
Перечислены все случаи пересечения, на выбор.
Объяснение:
№1 пересекает №№2,3,4,5,7,8, параллельна 6 и 9.
№2 пересекает №№1,3,4,5,6,7,8,9.
№3 пересекает №№1,2,4,5,6,7,8,9.
№4 пересекает №№1,2,3,5,6,7,8,9.
№5 пересекает №№1,2,3,4,6,7,8,9.
№6 пересекает №№2,3,4,5,7,8, параллельна 1 и 9.
№7 пересекает №№1,2,3,4,5,6,8,9.
№8 пересекает №№1,2,3,4,5,6,7,9.
№9 пересекает №№2,3,4,5,7,8, параллельна 1 и 6.
Заключение: графики линейных функций, коэффициент k которых (при х) одинаковый, параллельны.
1) y = -2x-1 2 6)y= -2x-3,5 9)y= -2x+5
ответ: 1 ; -4.