решить уравнение --- найти х
т.е. нужно выразить х из этого равенства
1) (а-3)*х = 3-а х = (3-а) / (а-3) = -(а-3) / (а-3) = -1 (в данном случае х от а не зависит)
(при а=3 уравнение имеет бесконечное множество решений...)
2) ах-2 = 2х+5 ах-2х = 5+2 = 7 х(а-2) = 7 х = 7/(а-2) (а не может быть =2)
3) 3х+4 = ах-8 ах-3х = 4+8 = 12 х(а-3) = 12 х = 12/(а-3) (а не может быть =3)
4) n-5х = -5+nx n+5 = 5x+nx n+5 = x(5+n) x = (n+5)/(5+n) = 1 (х от n не зависит)
(при n=-5 уравнение имеет бесконечное множество решений...)
5) mx-3 = 3x-m -3+m = 3x-mx -(3-m) = x(3-m) x = -(3-m)/(3-m) = -1 (х от m не зависит)
(при m=3 уравнение имеет бесконечное множество решений...)
6) 3(a-2x)+7 = 4a-5x 3a-6x+7 = 4a-5x 3a-4a+7 = 6x-5x 7-a = x
7) (3x-2a):5 = (2x-3a):10 умножим обе части равенства на 10 (избавимся от знаменателя)
2(3x-2a) = (2x-3a) 6x-4a = 2x-3a 6x-2x = 4a-3a x = a
8) (a+3)*x = (a+3)(a-2) x = (a+3)(a-2) / (a+3) x = a-2 (при а=-3 уравнение имеет бесконечное множество решений...)
10,4=а1+5d
5.8=a1+15d
Отнимая от 2 уравнения 1-е получаем: 10d=-4.6, откуда d=-0,46.
Найдем а1 из второго уравнения: 5,8-15*(-0,46)=12.7.
Чтобы выяснить, является ли число 6,2 членом этой прогрессии, воспользуемся формулой n-го члена арифметической прогрессии: 6,2=12.7-0,46(n-1)
-6.5=-0.46n+0.46
-6.04=-0.46n
n=13.130434782
Т.к. n- нецелое число, то число 6,2 не является членом этой арифметической прогрессии.
в.
Объяснение