Для решения задач на движение существует готовая формула s = v * t - формула пути s - расстояние 1 м 25 см = 125 см v - скорость 54 см/ч t - время ? t = 125 cм : 54 см/ч = 2 целых 17/54 часа = 2 ч 18,(8) мин ответ: за 2 часа и примерно 19 минут.
Но уж если в условии задачи дали размеры гусеницы, попробуем использовать и эту величину. (начало пути) < 125 см > + 1 cм = 126 см (конец пути) t = 126 см : 54 см/ч = 126/54 = 2 18/54 = 2 1/3 часа - за это время гусеница преодолеет расстояние 125 см (вынесет свой хвост за отметку 125 см) 2 1/3 часа = 2 ч + (60 : 3) мин = 2 ч 20 мин. ответ: за 2 ч 20 мин.
Объяснение:
1) проверим для n=3
2³=8 ; 2*3+1=7 ; 2³>2*3+1 верно (1)
2) предположим что неравенство верно при n=k (k>3) (2)
3) при n=k+1 проверим выполнение неравенства
2^(k+1)=2*2^k
2(k+1)+1=2k+3
по предположению (2) 2^k>2k+1
умножим обе части на 2
2*2^k>2(2k+1)=4k+2
2*2^k>4k+2
сравним 4k+2 и 2k+3 для этого определим знак их разности
4k+2 - (2k+3)=4k+2-2k-3=2k-3 так как k>3 то 2k>2*3=6
2k>6 и тем более 2k>3 ⇒ 2k-3>0 ⇒ 4k+2 - (2k+3)>0 ⇒ 4k+2 > (2k+3)
так как 2^(k+1)>4+2k и 4+2k>2k+3 и 2k+3=2(k+1)+1
то 2^(k+1)> 2(k+1)+1 то есть неравенство выполняется для n=k+1 (3)
из (1); (2); (3) ⇒ неравенство верно для любого n>3