1.
– 6x – 23 = – 9x – 5
– 6x + 9x = – 5 + 23
3x = 18
x = 6
2.
8x – 6 = 5x + 3
8x – 5x = 3 + 6
3x = 9
x = 3
3.
6x + 7 = 20x – 5 – 16
6x – 20x = – 16 – 5 – 7
-14x = -28
x = 2
4.
15x – 12x – 20 = 14x + 35
15x – 12x – 14x = 35 + 20
-11x = 55
x = -5
5.
15x – 40 – 6 + 15x = 4x – 20
15x + 15x – 4x = – 20 + 6 + 40
26x = 26
x = 1
6.
2(x-23)+3(15-x)=-x+1
2x – 46 + 45 – 3x = – x + 1
2x – 3x + x = 1 – 45 + 46
0x = 2
Какой бы x мы ни взяли, это уравнение не превратится в верное равенство. Значит, это уравнение решений не имеет!
Приведем подобные члены. Я их сгруппирую для наглядности:
Различия между ними - это степень и сама буква неизвестного значения: "a" и "b".
Далее просто складываем и вычитаем в зависимости от знака подобные члены. Все упрощение, условно, сводится в 3 действия, так как 3 вида значений:
1)
2)
3)
В итоге записываем полученное выражение:
На этом можно остановиться, можно вынести одинаковые значения за общую скобку. Этим значением является буква b, тогда запись выражения примет вид:
Но нужно помнить, что когда мы выносим одинаковые члены за скобку, то от чего мы их отделяем - делим на то самое отделяемое значение. Если расписать действие переноса буквы b за скобку по шагам, то будет более понятно:
Решение без пояснений:
---------------------------------------------------------------------
2.
Тут самое главное правильно раскрыть скобки с учетом знаков перед ними, а далее все как в первом решении. Начинать раскрытие скобок нужно изнутри, то есть от выражения "
Распишу раскрытие скобок по действиям:
1)
2)
3)
В итоге получили выражение под пунктом 3.
Далее, приводя подобные члены получим:
Далее можем также вынести за скобку одинаковые члены, но в этом нет смысла, так как не принесет упрощения.
Решение без пояснений: