1. S(км) V(км/ч) t(ч)
По течению 45 v+2 45/v+2
Против течения 45 v-2 45/v-2
Пусть v - собственная скорость лодки.
(45/v+2)+(45/v-2 )=14
Домножим 1 скобку на (v-2) 2 на (v+2), 14 на (v+2)(v-2)
((45v-90+45v+90)-(14*(v-2)(v+2)))/(v-2)(v+2)=0
-14v^2+90v+56=0 (v-2)(v+2)не=0
Разделим обе части на -2 vне=2; vне=-2
7v^2-45v-28=0
D=(-45)^2-4*7*(-28)=2809.
v1=(45+53)/14=7.
v2=(45-53)/14=-8/14
Т.к. скорость не может быть отрицательной, следовательно собственная скорость лодки равна 7 км/ч.
---
3. 1катет=х(см)
2катет=х+31(см)
гипотенуза=41(см)
По теореме Пифагора:
х^2+(x+31)^2=41^2
x^2+x^2+62x+961=1681
2x^2+62x-720=0
Разделим на 2:
x^2+31x-360=0
D=31^2-4*1*(-360)=2401.
x1=(-31+49)/2=9.
X2=(-31-49)/2=-40
Т.к. длина не может быть отрицательной, следовательно длина 1катета равна 9(см).
Длина 2катета=х+31
31+9=40(см)
1катет=9см, 2катет=40см.
наим. -4750
наиб. 34
Объяснение:
f(x) = x⁵+15x³-50x
x ∈ [-5 ; 0]
экстремумы (мин или макс) в точках f'(x) = 0
f'(x) = 5x⁴ + 45x³ - 50
5x⁴ + 45x³ - 50 = 0
x⁴ + 9x² - 10 =0
x² = y ≥ 0
y² + 9y -10 =0
D = 121
y = (-9 +11)/2 = 1, второй корень отрицательный - не подходит
x² = 1
x = -1, т. к. 1 ∉ [-5 ; 0]
f(-1) = -1 -15 + 50 = 34
узнать мин или макс можно или через 2-ю производную или сравнить со значениями в окрестности.
Сравним:
f(0) = 0 < 34
f(-2) = -32 - 120 + 100 = -52 < 34
Значит наибольшее на отрезке = 34 и это единственный экстремум на промежутке, значит наименьшее будет на его краях, при 0 уже нашли найдем при -5
(-5)⁵ + 15*(-5)³ + 250 = -3125 - 1875 + 250 = -4750 это и будет наименьшим значением
−39zx+65zy+91z
Выносим общий множитель -13z за скобки,получаем:
-13z(3x-5y-7)