М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daniiltkachuk1p02aol
daniiltkachuk1p02aol
27.01.2022 14:36 •  Алгебра

Скількома можна вибрати 1 рожеву або 1 червону троянду з 12 рожевих та 9 червоних троянд? *

👇
Ответ:
Black219911
Black219911
27.01.2022

98

Объяснение:

о'бснить не могу до мене тоже ледь дошло

4,4(63 оценок)
Открыть все ответы
Ответ:
elv1n
elv1n
27.01.2022
Основное свойство степени:
1. Каким бы ни было число а и  натуральные показатели степеней m и n, всегда 
(a^m) * (a^n) = a^(m + n)
Например: a³ * a⁶ = a³⁺⁶ = a⁹
2. 
1) Как можно возвести в степень произведение чисел, степень числа?
а) n-я степень произведения равна произведению n-ых степеней множителей.
Например: (2*3)⁴ =(2⁴) * (3⁴)
б) При возведении степени в степень, нужно показатели степеней перемножить, а основание оставить прежним.
Например: (2³)⁴ = 2¹²; 
2) Запишите результат вычислений в виде а*(10^n), где 1 ≤ a < 10:
a) (5*10⁴)³ =5³ * 10¹² = 125*10¹²
б) (7*10⁵)³*(2*10⁶)² = 7³ * 10¹⁵ 2² * 10¹² = 343 * 4*10²⁷ = 1372*10²⁷
3. Замените выражение (p²)⁵*(p⁴)³ = p²*⁵ * p⁴*³ = p¹⁰*p¹² =
 = p¹⁰⁺¹² = p²² степенью с основанием p, указывая, какие свойства степени вы применяете.
4. Вычислите 
[(2⁵)² * 3⁸)] / (6⁶) = [(2⁵*² * 3⁸] / (2⁶*3⁶) = (2¹⁰ * 3⁸) / (2⁶ * 3⁶) = 2¹⁰⁻⁶ * 3⁸⁻⁶ = 2⁴ * 3² = 16*9 = 144
4,5(45 оценок)
Ответ:
zajigalka2001
zajigalka2001
27.01.2022

ответ:5

Объяснение:

Покажем, что Петино множество не может содержать больше, чем 5 элементов. От противного: пусть множество содержит не менее 6 элементов. Упорядочим эти элементы по неубыванию модулей:

 |a1|≤|a2|≤...≤|a6|.

Отметим, что среди элементов a2, a3… a6 не может встретиться 0.

Для любой четвёрки a, b, c, d,, являющейся выборкой из элементов a2, a3… a6, справедливо неравенство

abcd≤a41.

При этом, так как среди элементов a2, a3… a6 существует не более одного, совпадающего с a1 по модулю, мы получаем

 a41<|abcd|.

Выберем четвёрку a, b, c, d, так, чтобы abcd=|abcd|.

 Если среди элементов a2, a3… a6 нет отрицательных, то в качестве a, b, c, d, подойдут любые из этих элементов. Если среди элементов a2, a3… a6 есть ровно 1 отрицательный, то в качестве a, b, c, d, подойдут оставшиеся положительные элементы. Если среди элементов a2, a3… a6 есть ровно 2 или 3 отрицательных, то в качестве a, b, c, d, подойдут 2 отрицательных и 2 положительных элемента. Если же среди элементов a2, a3… a6 существует не менее 4 отрицательных, то в качестве a, b, c, d, подойдут любые 4 отрицательных элемента из a2, a3… a6.

Таким образом, мы нашли такие a, b, c, d,, для которых выполняется равенство abcd=|abcd|.

Но тогда abcd<a41<|abcd|=abcd.

Тем самым мы получили противоречие. Значит, Петино множество состоит не более, чем из 5 целых чисел.

Указанный пример показывает, что Петино множество с 5 элементами существует:

 1, 2, 3, 4, −5.

4,4(33 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ