пусть а, a+d, a+2d - три числа, образующие арифмитическую прогрессию, тогда
a+8, a+d, a+2d - три числа образующие геометричесскую прогрессию
отсюда и из условия имеем
a+8+a+d+a+2d=26 (условие задачи - сумма членов геометричесской прогрессии равна 26)
3a+3d=18
a+d=6 (*)
d=6-a
(a+d)^2=(a+8)(a+2d) (использовано свойство, если дано три последовательные члены геометрической прогрессии, то квадрат среднего равен произведению первого и третьего члена)
6^2=(a+8)(12-a) (используем (*) )
36=12a+96-a^2-8a
a^2-4a-60=0
D=256=16^2
a1=(4+16)/2=10
a2=(4-16)=-6
b[1]=a=10
b[2=]a+d=6
q=b[2]/b[1]=6/10=0.6
или
b[1]=a=-6
b[2]=a+d=6
q=b[2]/b[1]=6/(-6)=-1
1)2x²-13x+6=0
D=13²-4*2*6=169-48=121=11²
x₁=(13-11)/4=0.5
x₂=(13+11)/4=6
2)2x²-11x-21=0
D=11²+4*2*21=289=17²
x₁=(11-17)/4=-1.5
x₂=(11+17)/4=7
решите неравенства
1)5x²+4x-9≤0D=4²+4*5*9=196=14²
x₁=(-4+14)/10=1
x₂=(-4-14)/10=-1.8(x-1)(x+1.8)≤0
-1.81
+ - +
x∈[-1.8; 1]
2)3y²-7y-10>0
D=7²+4*3*7=169=13²
y₁=(7-13)/6=-1
y₂=(7+13)/6=10/3
(y-10/3)(y+1)>0
-110/3
+ - +
y∈(-∞; -1)∪(10/3; +∞)