М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sirozazuruhin
sirozazuruhin
20.05.2023 11:56 •  Алгебра

Плоскость, параллельная стороне АВ треугольника АВС, пересекает его в точках А1 и В, лежащих на сторонах АС и ВС соответственно. Найдите АА1, если А1С=5 см, А1В1=7 см, АВ=21 см

👇
Ответ:
ренат123456789
ренат123456789
20.05.2023

9

не чего объяснить почему

4,6(48 оценок)
Открыть все ответы
Ответ:
ВулканчикD
ВулканчикD
20.05.2023
Достроим треугольник DAM до параллелограмма AMED.
ME || AD || BC
Поэтому точка E лежит в плоскости ADM и лежит в плоскости BCM.
Следовательно ME и есть прямая пересечения ADM и BCM
ME=BC и ME || BC, следовательно BMEC параллелограмм
угол MBC прямой, BMEC -- прямоугольник, следовательно ME перпендикулярно BM.
угол BAD прямой, следовательно, MAD -- тоже прямой (теорема о 3 перпендикулярах) , следовательно AMED -- прямоугольник, следовательно, ME перпендикулярно AM.
ME перпендикулярно AM и BM, следовательно, ME перпендикулярно плоскости ABM.
4,7(62 оценок)
Ответ:
русел222033
русел222033
20.05.2023

сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .

в случае квадратного уравнения формулы виета имеют вид:

значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.

. используя теорему виета, найти корни уравнения

решение. согласно теореме виета, имеем, что

подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения

и

ответ. корни уравнения ,

обратная теорема виета

если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.

. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.

решение. пусть искомое квадратное уравнение имеет вид:

тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:

тогда

то есть искомое уравнение

ответ.

общая формулировка теоремы виета

если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:

иначе говоря, произведение равно сумме всех возможных произведений из корней.

4,6(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ