М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
адэляком
адэляком
22.06.2020 17:20 •  Алгебра

Серебра 2 слитка и 5 слитков золота, их масса равна 132 кг. Какова масса слитка серебра и какова масса слитка золота, если масса 6 слитков серебра на 76 кг больше массы слитка золота?

👇
Ответ:
NuriEynullaeva
NuriEynullaeva
22.06.2020

Пусть серебра-x, тогда золота-y

Составим систему:

2x+5y=132        Решу методом сложения

6x-y=76 |·5

32x=512

x=16

y=20

4,4(25 оценок)
Открыть все ответы
Ответ:
vovakornev2002
vovakornev2002
22.06.2020
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4,8(64 оценок)
Ответ:
averianova1986
averianova1986
22.06.2020
Пусть на отрезке AB точка C - место встречи автомобиля с первым мотоциклом, точка D - место встречи со вторым мотоциклом. Причем точка D находится между точками C и B. Если AB = s , скорость мотоцикла Vм , скорость автомобиля  Vа , AC =  x , то CD =  2s/9 , CB =  s−x и DB =  7s/9−x . Так как по условию автомобиль и первый мотоцикл выехали одновременно, то  x/Va=(s−x)/Vм . То есть затраченное время каждым одинаково на путь до встречи. Аналогично для автомобиля и второго мотоцикла с момента первой встречи автомобиля до второй встречи:  2/9s/Va=7/(9s−x)/Vм . Из первого уравнения выразим  x=Va*s/Va+Vм и подставим во второе. После упрощения получаем  2/Vа⋅Vм=7−(Vа/(Vа+Vм)) , то есть  2V²a−5VaVм+2V²м=0 . Разделим левую и правую части уравнения на  V²м и получим квадратное уравнение относительно  Vа/Vм :  2(Vа/Vм)²−5Vа/Vм+2=0 . Находим, что  Va/Vм=2 или  Vа/Vм=1/2 . Так как по условию скорость мотоцикла меньше, то  Vа=2Vм . Далее рассмотрим случай, когда скорость автомобиля на 20 меньше. Точки C и D будут иметь тот же смысл, что и в первом случае. Пусть AC = y, CD = 72, DB = s- y -72, CB = s - y. Тогда можно составить уравнения:  y/(Va−20)=3 ,  y/(Va−20)=(s−y)/Vм и  72/(Va−20)=(s−y−72)/Vм .  Из первого и второго уравнений выражаем y и приравниваем:  6(Vм−10)=(2s(Vм−10))/3Vм−20 , откуда  Vм=s+609 . Далее в третье уравнение подставляем найденные выражения так, чтобы осталась только неизвестная s:   36/((s+60)/9)−10)=s−6(((s+60)/9)−10)−72/((s+60)/9) . Получаем  36/(s−30)=(9s−6s+180−648)/9(s+60) , откуда  s²−294s−1800=0 и  s=300 .   
4,8(25 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ