Преобразуем по формуле суммы кубов: (x+y)(x²-xy+y²) = x³+y³
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
Из теоремы Виета получаем, что
x₁+x₂ = 2x₁x₂ = qПреобразуем нашу формулу суммы кубов, подставив вместо x₁+x₂ и вместо x₁x₂ соответствующие значения (2 и q):
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
2 * (x₁²- q + x₂²) = 32
Чтобы найти значение x₁²+x₂², возведём в квадрат следующее равенство:
(x₁+x₂)² = 2²
x₁²+2x₁x₂+x₂²=4
x₁²+x₂²=4-2x₁x₂
Воспользуемся следующим равенством x₁x₂ = q
x₁²+x₂²=4-2q
Ещё раз преобразуем нашу формулу:
x₁²+ x₂² - q= 16
4 - 2q - q = 16;
-3q =12
q = -4
Умножим на -4/5 и получаем ответ: -4/5q = -16/5
Все ординаты графика у = х³ увеличиваются на 2
Это параллельный перенос у=х³ вверх на 2 единицы (клеточки)
Считаем точку (0;2) за начало координат и от неё
Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³)
Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³)
Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³)
Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³)
б)у=х³-1
Все ординаты графика у = х³ уменьшаются на 1
Это параллельный перенос у=х³ вниз на 1 единицу (клеточку)
Считаем точку (0;-1) за начало координат и от неё
Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³)
Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³)
Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³)
Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³)
в) у=(х-1)³
В точке х =1 график этой функции ведет себя так же как у=х³ в начале координат (0;0)
Считаем точку (1;0) за начало координат и от неё
Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³)
Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³)
Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³)
Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³)
2)Выделим полный квадрат.
х²-6х+5=(х²-2·х·3+3²-3²)+5=(х²-6х+9)-9+5=(х-3)²-4
Координата вершины параболы у= 5-6х+х² в точке (3;-4)
Считая ее за начало координат строим параболу у=х²
Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х²)
Уходим вправо на2 клеточки и вверх на 4 ( это как точка (2;4) у параболы у=х²)
Уходим влево на1 клеточку и вверх на одну ( это как точка (-1;1) у параболы у = х²)
Уходим влево на2 клеточки и вверх на 4 ( это как точка (-2;4) у параболы у=х²)