Подробно:
Пусть первый рабочий делает х деталей в час.
Тогда второй рабочий делает х-3 детали в час.
Первый рабочий сделает 391 детали за
391:х часов
второй рабочий сделает 460 деталей за
460:(х-3)
По условию задачи время первого рабочего при изготовлении 391 детали меньше времени второго рабочего при изготовлении 460 деталей на 6 часов.
Запишем и решим уравнение:
460:(х-3) - 391:х =6
Умножим обе части уравнения на х(х-3)
460х - 391(х-3) =6 х(х-3)
460х - 391х+1173 =6 х²-18х
6 х² -69х-18х - 1173=0
6 х² -87х - 1173=0
для облегчения вычислений разделим на 3 обе части уравнения
2 х² - 29х-391=0
Дискриминант равен:
D=b2-4ac=-292-4·2·-391=3969
У уравнения 2 корня.
х=23
Второй корень отрицательный, он не подходит.
Первый рабочий делает в час 23 детали.
Проверка:
460:(23-3) -391:23=6
Коротко:
Пусть первый рабочий делает х деталей в час.
Тогда второй рабочий делает х-3 детали в час.
Составим и решим уравнение
460:(х-3) - 391:х =6
6 х² -87х - 1173=0
Дискриминант равен:
D=b2-4ac=-292-4·2·-391=3969
х=23
ответ:23 детали в час
ax² + bx + c = 0 - квадратное уравнение (a ≠ 0), называется неполным, если b = 0, или c = 0, или оба сразу (b = 0 и c = 0). Разберем все эти случаи.
1) b = 0 и c ≠ 0
ax² + c = 0
ax² = -c
x² = -c / a
x² ≥ 0, поэтому для того, чтобы уравнение не имело корней достаточно -c / a < 0; c / a > 0 - ответ на первый вопрос
2) b ≠ 0; c = 0
ax² + bx = 0
x·(ax + b) = 0
x₁ = 0; x₂ = -b / a
То есть корни будут всегда, ответ на второй вопрос задачи:
(при b ≠ 0; c = 0; Уравнение ax² + bx = 0 имеет 2 корня, один из которых 0)
3) b = 0 и c = 0
ax² = 0
x = 0, то есть всегда корнем будет 0
Объяснение: