1. Решим первое неравенство этой системы:




ответ: 
2. Дробь
существует, если

Перед тем как выражать
, нужно рассмотреть случаи, когда дробь
положительная, а когда отрицательная:
знак неравенства меняться не будет (так как делим (умножаем) на положительное число):
Решим неравенство методом интервалов.
а) ОДЗ: 
б) Нуль неравенства: 
в) Решением данного неравенства будет
.
При таких значениях параметра
знак неравенства меняться не будет:







знак неравенства измениться на противоположный (так как делим (умножаем) на отрицательное число):
Решим неравенство методом интервалов. Решением данного неравенства будет
.
При таких значениях параметра
знак неравенства изменится:



ответ: если
, то
; если
, то
; если
и
, то неравенство не имеет решений.
3. Данная система неравенств решается в зависимости от значений параметра
, поэтому:
1) Рассмотрим случай, когда решение неравенств пересекается:
Если
, то есть
, то в объединении с
получаем 
при
Если
, то есть
, то в объединении с
получаем, что таких
не существует, то есть такого варианта эта система не имеет.2) Рассмотрим случай, когда решение неравенств не пересекается (когда система не имеет решений):
Оставшийся промежуток является решением этого варианта:![a \in \bigg[-\dfrac{3}{4}; \dfrac{1}{2} \bigg]\cup \bigg[\dfrac{6}{5}; + \infty \bigg) \cup \begin{Bmatrix} -\dfrac{5}{4}; 1 \end{Bmatrix}](/tpl/images/0595/8885/89750.png)
ответ: если
, то
; если
, то
; если
, то система не имеет решений.
2) Десятичные приближения по недостатку и по избытку - это десятичные дроби, между которыми заключено иррациональное число. Возьмём, например, √3~1,732. Его приближением до сотых долей по недостатку будет 1,73, а по избытку 1,74.
3) Классическое доказательство. Если √2 рационально, то его можно выразить несократимой дробью √2=a/b. Возведем все в квадрат. 2=a^2/b^2. То есть 2b^2=a^2. Теперь рассуждаем. Слева чётное число, значит a тоже чётное. Но чётный квадрат всегда делится на 4. Значит, b^2 тоже чётный. Но тогда а и b оба четные и дробь a/b можно сократить. Но мы условились, что дробь несократима. Противоречие. Значит, число √2 нельзя выразить дробью, то есть оно иррациональное.
4) Действительные - это все числа, и рациональные и иррациональные.
5) Действительные числа можно представить в виде точек на координатной прямой, причём это все точки на прямой.
6) Натуральные N, целые Z, рациональные Q, действительные R. Круги Эйлера нарисовать не могу, но могу объяснить. Действительные - самый большой круг, рациональные внутри, целые внутри рац-ных, натуральные внутри целых.