Объяснение:Это если тебе нужно найти корни
5. Решим квадратное уравнение.
Запишем уравнение в исходном виде:
10х^2 + х - 24 =0
Так как уравнение неприведенное, то решаем через дискриминант:
D = b^2 - 4ac
D = 1 - 4*10*(-24)
D = 1 - (-960) = 1 + 960 = 961
sqrt(D) = sqrt(961) = 31
Находим корни уравнения:
х1 = (-b + sqrt(D))/2a = (-1 + 31)/2*10 = 30/20 = 3/2 = 1,5
х2 = (-b - sqrt(D))/2a = (-1 - 31)/2*10 = -32/20 = -(8/5) = -1,6
ответ: -1,6
6. Вычисляем количество корней уравнения:
ОДЗ: х не равно -2.
х1 = 2
х2 = sqrt(3)
x3 = -sqrt(3)
Следовательно уравнение имеет 3 корня.



![\frac{2231}{18} - \frac{1291}{108} = b^3 +\frac{2231}{12}b + \frac{12095}{108} =0\\ Q = (\frac{q}{2})^2+(\frac{p}{3})^3 = (\frac{12095}{216})^2 + (\frac{2231}{36})^3 = \frac{12095^2+2231^3}{6^6} =\frac{11250781416}{6^6}\\ \sqrt{Q} = \frac{\sqrt{11250781416}}{216}\\b = \sqrt[3]{-\frac{q}{2}+\sqrt{Q}} + \sqrt[3]{-\frac{q}{2}-\sqrt{Q}}\\](/tpl/images/0683/3474/5b187.png)
![b = \sqrt[3]{-\frac{12095}{216}+\frac{\sqrt{11250781416}}{216}} + \sqrt[3]{-\frac{12095}{216}-\frac{\sqrt{11250781416}}{216}} = \frac{1}{6}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095})\\m = b +\frac{2}{3} = \frac{1}{6}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)\\m = 2a = a = \frac{m}{2} = \frac{1}{12}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)\\(t^2 - 0.5 + a)^2 = 3.5t + 46.8125 + 2(t^2-0.5)a + a^2\\](/tpl/images/0683/3474/6b782.png)
Да, кстати, корень кубического уравнения единственный в поле действительных чисел, так как его дискриминант больше нуля.
Теперь, при таком значении а правая часть вышенаписанного уравнения - это полный квадрат. Найдем корень, учитывая это:
![t_0 = \frac{-b}{2a} = \frac{-3.5}{4a} = -\frac{7}{8a} = -\frac{7}{8*\frac{1}{12}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)} = \frac{21}{2(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)}\\](/tpl/images/0683/3474/7a199.png)
Теперь свернем правую часть в полный квадрат и решим обычное квадратное уравнение:

Рассмотрим первую скобку и найдем такие t, при которых она обнуляется. Получим:

Честно говоря, мне кажется, в условии допущена ошибка. Циферки сами подставите и посчитаете, писать это неудобно.
Тартальи и Ферарро.
ответ:х1=2 х2=5
Объяснение:
-2х+4=0
-2х+5=0
х=2
х=5