М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Попрлекс
Попрлекс
05.05.2021 09:07 •  Алгебра

Log2(3)×log3(4)×log4(5)××log63(64) найдите значение выражения​

👇
Открыть все ответы
Ответ:
Viktoriya20030401
Viktoriya20030401
05.05.2021

Могу предложить несколько корявое, но все же решение... наверное.

Обозначим за a и b цифры искомого числа. Тогда из условия задачи это число есть

8(a+b)+7 и (a+b)^2-ab+14

приравняем выражения, будем считать a переменной величиной, а b какой-то постоянной, тогда это будет квадратным уравнением относительно a :

a^2+a (b-8)+b^2-8 b+7

Решая обычным образом находим

a_{12}= \frac{1}{2}(8 - b \pm \sqrt{- 3 b^2+ 16 b+36 })

Мы знаем, что a и b - цифры, т.е. они могут быть лишь величинами 0 1 2 3 4 5 6 7 8 9

Смотрим, при самых очевидных b=0, b=1 корень нормально извлекается.

Тогда

\left \{ {{b=0} \atop {a_{12}=1;7}} \right.

\left \{ {{b=1} \atop {a_{12}=0;7}} \right.

Из всех возможных двузначных чисел (17, 70, 71) подходящим оказывается только 71

Подтвердить это можно только непосредственной проверкой

71=8*(7+1)+7; (7+1)^2-7*1+14=71

4,7(26 оценок)
Ответ:
Верунчик80
Верунчик80
05.05.2021
Характеристическое уравнение r²-8r+16=0; r1=r2=4.
Общее решение однородного уравнения: Y=(C1 +C2•х) •e^4x
Общее решение – y=Y+Y1, где Y1 - частное решение заданного уравнения, которое ищется в виде Y1=ax²•e^4x. => Y1’= 2ax•e^4x+4ax²•e^4x=2e^4x•(ax+2ax²);
Y1”=8e^4x•(ax+2ax²)+2e^4x•(a+4ax)= e^4x•(16ax²+8ax+8ax+2a)
Тогда
16ax²+16ax+2a-16ax-32ax²+16 ax²=1
2a=1 =:> a=1/2 или Y1=(x²•e^4x)/2

Тогда общее решение заданного уравнения:
у=(C1 +C2•х) •e^4x+(x²•e^4x)/2=(e^4x)•( C1 +C2•х+x²/2)
Находим У’ и, подставляя заданные начальные условия, находим С1 и С2 для этих условий.
у'=4•(e^4x)•( C1 +C2•х+x²/2)+ (e^4x)•(C2+x)
y(0)=C1=0;
y’(0)=4C1+C2=1 => C2=1.
Подставляя найденные значения С1 и С2 в общее решение получаем искомое частное решение заданного уравнения
у= (e^4x)•(х+x²/2).                    пыталась  как  можно проще написать    примерно  так
4,8(5 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ