Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.
Раскрываем знак модуля: 1) если х≥0, то | x| = x если y≥0, то | y| = y Уравнение принимает вид : (x+y-1)(x+y+1)=0 х+у-1=0 или х+у+1=0 у=-х+1 или у=-х-1 В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x если y≥0, то | y| = y Уравнение принимает вид : (-x+y-1)(x+y+1)=0 -х+у-1=0 или х+у+1=0 у=х+1 или у=-х-1 Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x если y<0, то | y| =- y Уравнение принимает вид : (-x+y-1)(x-y+1)=0 -х+у-1=0 или х-у+1=0 у=х+1 или у=х+1 В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x если y<0, то | y| =- y Уравнение принимает вид : (x+y-1)(x-y+1)=0 х+у-1=0 или х-у+1=0 у=-х+1 или у=х+1 В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти. Тогда получится нужный график, см. рисунок
Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.