М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kira5672
Kira5672
16.12.2022 08:27 •  Алгебра

З натуральних чисел від 1 до 171 складені всі можливі пари з різними елементами. Знайдіть серед них кількість пар добуток елементів яких ділиться на три

👇
Открыть все ответы
Ответ:
vaniev2006
vaniev2006
16.12.2022
A =9x =4y +2 ; 
Число  a должна  иметь  вид : a =36k +18 .  

Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k  ≤ 27.
Количество таких чисел:  n=27-(3-1) = 25 . 
a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * *
* !  702 = 126 +(n-1)36⇒n=17  * * * 
702 =36k+18 при k =19.

* * *   P.S.  * * *
a = 9x = 4y +2 ;  || 100 <9x <1000⇔12 <x ≤111 || 
y =(9x -2)/4 ;
y = 2x + (x-2)/4  ; k= (x-2)/4⇒x=4k+2 .  || y =2x+k =2(4k+2)+k =9k+4 ||
⇒ { x =4k +2 . y =9k+4 .
||  12 ≤ 4k+2 ≤ 111⇔2,5  ≤ k ≤27,25 ; 3 ≤ k ≤ 27 ||
a =9x =36k+18.
 
 
число  a =9x =9(4k +2) =36k +18.
4,8(1 оценок)
Ответ:
bekbolata45
bekbolata45
16.12.2022

1-ое уравнение:

x=-\dfrac{1}{4}

2-ое уравнение:

x_1=0\\x_2=-4\\x_3=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}\right)+\dfrac{7}{3}\\x_4=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}+\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\x_5=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}-\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\

Объяснение:

28x^3+3x^2+3x+1=0

разложение на множители):

Заметим, что данное уравнение хорошо раскладывается на множители:

28x^3+3x^2+3x+1=28x^3+7x^2-4x^2-x+4x+1=\\=7x^2(4x+1)-x(4x+1)+(4x+1)=(4x+1)(7x^2-x+1)=0

Второй множитель не имеет корней.

Поэтом ответ -\dfrac{1}{4}.

Поделим исходное уравнение на 28. Получим:

x^3+\dfrac{3}{28}x^2+\dfrac{3}{28}x+\dfrac{1}{28}=0, где a=\dfrac{3}{28},\;b=\dfrac{3}{28},\;c=\dfrac{1}{28}

Выполним вычисления:

Q=\dfrac{a^2-3b}{9}=-\dfrac{27}{784}\\R=\dfrac{2a^3-9ab+27c}{54}=\dfrac{351}{21952}\\S=Q^3-R^2\approx-0.0003\\\varphi =\dfrac{1}{3}\times \mathrm{Arsh}\left(\dfrac{|R|}{\sqrt{|Q|^3}}\right)=\dfrac{1}{2}\ln3

Тогда действительный корень будет равен:

x=-2\sqrt{\dfrac{27}{784}}\mathrm{sh}\left(\dfrac{1}{2}\ln 3\right)-\dfrac{1}{28}=-\dfrac{1}{4}

Пришли к тому же ответу.

Уравнение решено!

2)

(x²+4x)(x²+x-6)=(x³-16x)(x²-2x-35)

Раскроем скобки и упростим вырождение:

x^5-3x^4-56x^3+34x^2+584x=0\\\\x=0\\x^4-3x^3-56x^2+34x+584=0

Второе уравнение раскладывается на множители:

(x+4)(x^3-7x^2-28x+146)=0\\\\x=-4\\x^3-7x^2-28x+146=0

Последнее кубическое уравнение не имеет целых корней.

Поэтому нужно считать так же, как мы делали это при решении 1-ого уравнения 2-ым

x^3-7x^2-28x+146=0\\\\Q=\dfrac{133}{9}\\R=\dfrac{746}{27}\\S\approx24640

Значит имеем 3 корня:

\varphi=\dfrac{1}{3}\arccos(\dfrac{R}{\sqrt{Q^3}})=\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}

x_1=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}\right)+\dfrac{7}{3}\\x_2=x=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}+\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\x_3=x=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}-\dfrac{2\pi}{3}\right)+\dfrac{7}{3}

Итого, уравнение имеет 5 корней:

x_1=0\\x_2=-4\\x_3=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}\right)+\dfrac{7}{3}\\x_4=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}+\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\x_5=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}-\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\

Задание выполнено!

4,5(56 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ