22
Объяснение:
1. Чтобы найти наибольшее значение функции, возьмем производную от этой функции и приравняем ее к нулю (т.к. минимумы и максимумы функции находятся в точках, где производная равна 0)
y' = 3x²-5x - 2 = 0
2. Решаем это квадратное уравнение:
D = 49
x_1 =( 5 -7 ) / 6 = -1/3 (не подходит, точка не принадлежит указанному промежутку).
x_2 = (5 + 7) / 6 = 2, принадлежит промежутку.
3. Находим значение функции в точке x = 2
y (x = 2) = 2³-2.5*2²-2*2+6 = 8 - 10 - 4 + 6 = 14 - 14 = 0
4. ВНИМАНИЕ: наибольшее значение может достигаться на краях промежутка , обязательно проверяем края
y (x = 0) = 0 - 2.5 * 0 - 2* 0 + 6 = 6
y (x = 4) = 4³ - 2.5 * 4² - 2*4 + 6 = 64 - 40 - 8 + 6 = 22
Итого, самое большое значение равно 22 и достигается в точке x = 4
Объяснение:
1)И з условия мы видим, что a_{1}=-30,тогда разность будет равна
d=-28-(-30)=2
Теперь по формуле
a_{n}=a_{1}+d(n-1)
a_{28}=-30+2*27=24
2)Сумма=2*(1-4^5)/1-4=2*(-1023)/(-3)=682
b1=2
q=4 ( b2:b1=8:2=4)
n=5( количество членов прогрессии)
3)b_n=3*2
b_n=6
и тогда очевидно 384 не является членом последовательности
если же имелась в виду геометрическая прогрессия
b_n=3*2^n
3*2^n=384
2^n=384:3
2^n=128
2^n=2^7
n=7
тогда да является ее 7-ым членом
4)a_{2}+a_{4}=14\\ a_{7}-a_{3}=12\\ \\ 2a_{1}+4d=14\\ a_{1}+6d-a_{1}-2d=12\\ \\ a{1}+2d=7\\ 4d=12\\ d=3\\ a_{1}=1
ответ разность равна 3 , первый член равен 1