М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tanyapolya76ovv7hr
tanyapolya76ovv7hr
02.04.2021 18:47 •  Алгебра

Побудуйте графік рівняння х+2/4+у-3/6=-1/12​

👇
Ответ:
xlebic2008
xlebic2008
02.04.2021

Объяснение:

надеюсь все поняла


Побудуйте графік рівняння х+2/4+у-3/6=-1/12​
4,7(50 оценок)
Открыть все ответы
Ответ:
DanielFray
DanielFray
02.04.2021
Пусть первому крану потребуется Х часов, тогда второму (Х-5) часов. Примем работу за единицу, тогда скорость работы первого крана равна 1/Х, а второго 1/(Х-5). При совместной работе их скорости складываются. Т. е. общая скорость равна 1/Х + 1/(Х-5). А при совместной работе они будут тратить 1/(1/Х + 1/(Х-5)) часов. Получаем уравнение: 1/(1/Х + 1/(Х-5)) = 6 1/Х + 1/(Х-5) = 1/6 1/Х + 1/(Х-5) - 1/6 = 0 (6(Х-5)+6Х-Х (Х-5))/(6Х (Х-5)) = 0 6(Х-5)+6Х-Х (Х-5) = 0; причем Х не равен 0 и не равен 5 (т. к. он был в знаменателе) 6Х-30+6Х-Х^2 + 5Х = 0 Х^2 - 17Х + 30 = 0 Х1,2 = (17+-sqrt(289-120))/2 Х1,2 = (17+-13)/2 Х1 = 15; Х2 = 2. Если Х=15, то Х-5=10 Если Х=2, то Х-5=-3 - этот ответ не подходит. ответ: первому потребуется 15 часов; второму - 10 часов.
4,4(28 оценок)
Ответ:
lena101992
lena101992
02.04.2021

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ