Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
1)
-находим дескрименант: D=121-4*24=5^2
-находим корни уравнения: х1=(11+5)/2=8, x2=(11-5)/=3
-получаем в числителе: (х-8)*(х-3)
-знаменатель расскладываем по разности квадратов: (х-8)*(х+8)
-в числителе и знаменателе сокращаем (х-8)
-получаем дробь: (х-3)/(x+8)
2)
-находим дескрименант: D=81+4*2*5=11^2
-находим корни уравнения: х1=(11+9)/4=5, x2=(9-11)/4=-0.5
-получаем в числителе: 2*(х-5)*(х+1/2) сразу вносим 2 в скобки и получаем: (х-5)*(2х+1)
-получаем дробь: ((х-5)*(х+1)) / 4x^2-1
Все решено с иксами,во 2) надо или нет раскладывать знаменатель,там ничего не сократится