y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
ответ:6
Объяснение:1. Заметим, что никакое число, не превосходящее 1015, не может иметь высоту 4. Действительно, наименьшее число высоты 4 — это
2222=216, при этом это число больше 1015.
2. Между тем числа высоты 3, не превосходящие 1015, существуют. Например, 16=222 имеет высоту 3. Таким образом, задача свелась к подсчёту количества чисел высоты 3, не превосходящих 1015.
3. Заметим, что
29≤1015≤210,
36≤1015≤37,
44≤1015≤45,
54≤1015≤55,
63≤1015≤64.
4. Найдём количество чисел высоты 3, не превосходящих 1015. Это то же самое, что найти количество решений неравенства:
x1x2x3≤1015, xi≥2.
Если x1=2, то x2x3≤9, отсюда x2=x3=2, или x2=2, x3=3, или x2=3, x3=2. Отсюда получаем 3 решения.
Далее, если x1=3,4,5, получаем, что x2=x3=2, что даёт ещё три решения.
Наконец, при x1≥6 получаем, что x2x3≤3. Но так как xi≥2, то таких x2, x3 не существует.
5. Таким образом, получаем 3+3=6 чисел максимальной высоты, не превосходящих 1015.