М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Юсик1854
Юсик1854
19.12.2022 09:53 •  Алгебра

Діагоналі ромба 6см і 8см. Зайдіть його площу. а) 48см2; б) 14см2 ; в) 28см2 ; г) 24см2.

👇
Ответ:
Roblox2017
Roblox2017
19.12.2022

Объяснение:

S=1/2*d1*d2=1/2*6*8=48/2=24

4,6(57 оценок)
Ответ:
полина2125
полина2125
19.12.2022

площа ромба дорівнює половині добутку його діагоналей, тоді

1)6помножити на 8 =48

2)48 поділити на 2 =24

4,7(34 оценок)
Открыть все ответы
Ответ:
MGap58
MGap58
19.12.2022
Решить  уравнения 4 * 16^sin^2x - 6 * 4^cos2x = 29 
и найти все корни уравнения, принадлежащие отрезку [3π/2; 3π] 

4* (4² ^sin²x) -6*4^cos2x  = 29⇔ 4* 4 ^(2sin²x) -6*4^cos2x  = 29 ⇔
4* 4 ^ (1 -cos2x) -6*4^cos2x  = 29  ⇔4* 4¹*4^( -cos2x) - 6*4^cos2x  = 29 ⇔
4* 4 *  1 / ( 4^cos2x) - 6*4^cos2x  = 29  ;   * * * можно замена :t =4^cos2x * * *
6* (4^ cos2x)² +29* (4^ cos2x)  -16 =0 ;
* * * (4^ cos2x)² +(29/6)* (4^ cos2x)-8/3=0  * * * 
a) 4^cos2x = -16 /3   <  0  не имеет решения  ; 
b) 4^cos2x = 1/2  ⇔2 ^(2cos2x) = 2⁻¹ ⇔2cos2x = -1 ⇔  cos2x  = -1/2 . 
⇔2x  = ±π/3 +2πn ,n ∈Z  ;
x  = ±π/6 +πn ,n ∈Z .
* * * * * * *
Выделяем  все корни уравнения, принадлежащие отрезку [3π/2; 3π] .

3π/2  ≤ - π/6 +πn ≤  3π ⇔ 3π/2+π/6 ≤ πn ≤  3π+π/6 ⇔ 5/3  ≤ n ≤  19/6⇒
n =2 ; 3 .
x₁=  - π/6 +2π =11π/6 ;   x₂ = - π/6 +3π =17π/6 .

3π/2  ≤ π/6 +πn ≤  3π ⇔3π/2 -π/6 ≤ πn ≤  3π -π/6 ⇔4/3 ≤ n ≤  17/6⇒
 n=2
x ₃ =  π/6 +2π=13π /6 .
4,7(64 оценок)
Ответ:

1. Найти наибольшее и наименьшее значение функции

F(x)=\dfrac{x^2-7x}{x-9}   на промежутке [-4; 1]

Точка разрыва  x=9   в заданный интервал не входит.

F(x)=\dfrac{x^2-7x}{x-9}=x+2+\dfrac{18}{x-9}

Первая производная для нахождения точек экстремумов.

F'(x)=\Big(x+2+\dfrac{18}{x-9}\Big)'=1-\dfrac{18}{(x-9)^2}\\\\F'(x)=1-\dfrac{18}{(x-9)^2}=0\\\\ \dfrac{x^2-18x+81-18}{(x-9)^2}=0~~~\Leftrightarrow~~~\dfrac{x^2-18x+63}{(x-9)^2}=0\\\\ x^2-18x+63=0\\\\ \dfrac{D}4=9^2-63=18=(3\sqrt2)^2\\\\x_1=9+3\sqrt2\approx 13;~~~x_2=9-3\sqrt2\approx 4,75

Обе точки экстремумов не попадают в интервал  x∈[-4; 1]

Значения функции на концах интервала

F(-4)=\dfrac{(-4)^2-7(-4)}{-4-9}=\dfrac{16+28}{-13}=-3\dfrac{5}{13}\\\\F(1)=\dfrac{1^2-7\cdot1}{1-9}=\dfrac{-6}{-8}=0,75

ответ: наименьшее значение функции \boldsymbol{F(-4)=-3\dfrac{5}{13}};

           наибольшее значение функции F(1) = 0,75

-----------------------------------------------------------------------------

2. Записать уравнение касательной к графику

функции   F(x)=x⁴-2x   в точке  x₀=-1

Уравнение касательной имеет вид  y = F(x₀) + F’(x₀)·(x - x₀)

F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3

F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6

y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3

ответ:  уравнение касательной   y = -6x - 3

---------------------------------------------------------------------------

3. Исследовать функцию и построить ее график  F(x)=x³-3x²

1) Область определения  D(F) = R

2) Область значений  E(F) = R

3) Нули функции

   F(x)=x³-3x² = 0;      x²(x - 3) = 0;     x₁ = 0;  x₂ = 3

4) Пересечение с осью OY

  x = 0;   F(0) = 0³-3·0² = 0

5) Экстремумы функции

  F'(x) = 0;   (x³-3x²)' = 0;   3x² - 6x = 0;  3x(x - 2) = 0;

  x₁ = 0;  F(0) = 0;   F"(0) = 6x - 6 = -6   ⇒  локальный максимум.

  x₂ = 2;  F(2) = 2³-3·2² = -4;  F"(2) = 6x - 6 = 6  ⇒  локальный минимум.

6) Монотонность функции.

   Интервалы знакопостоянства первой

              производной F'(x) = 3x(x - 2)

   ++++++++ (0) ------------- (2) +++++++++> x

         /                    \                    /

  x ∈ (-∞; 0)∪(2; +∞)  -  функция возрастает

  x ∈ (0;2)  -  функция убывает

7) Функция не периодическая, общего вида (не является чётной, не является нечётной).

8) Дополнительные точки для построения

x₃ = -1;  y₃ = -4;  x₄ = 1;  y₄ = -2

9) График функции в приложении


1. знайти найбільше і ! 1. знайти найбільше і найменше значення функції f(x)= x^2-7x/x-9 на проміжку
4,5(30 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ