давайте покажу два примера:
для решения задания нам для начала нужно знать теорему Виета
она выглядит вот так:
если наше квадратное уравнение выглядит так x² + px + q = 0, то
x1 + x2 = -p
x1 · x2 = q
судя по первому примеру -1+3=2
-1*3=-3
тогда наше уравнение будет выглядеть так х^2+2x-3=0
следущий пример точно также: -0,2+(-0,3)=-0,5
-0,2*(-0,3)=0,06
а уравнение-x^2-0.5x+0.06=0
Желаю удачи!
Выделим полный квадрат из выражения
4m²+3mn+2n²=(4m²+3mn+9n²/16)+2n²-9n²/16=(2m+3n/4)²+23n²/16
Квадрат любого числа положителен или равен 0,сумма положительных положительна.Значит знаменатель дроби положителен⇒5/(4m²+3mn+2n²)>0
2
a)5x²+20x+15=5(x²+4x+3)
2x³+9x²+10x+3=x²(2x+1)+4x(2x+1)+3(2x+1)=(2x+1)(x²+4x+3)
(5x²+20x+15)/(2x³+9x²+10x+3)=5(x²+4x+3)/(2x+1)(x²+4x+3)=5/(2x+1)
b)(n^4-9n^3+12n^2+9n-13)/(n^4-10n^3+22n^2-13n) =
=[(n^4+n³)-(10n³-10n²)+(22n²+22n)_(13n+13)]/n(n³-10n²+22n-13)=
=[n³(n+1)-10n(n+1)+22n(n+1)-13(n+1)]/n(n³-10n²+22n-13)=
=(n+1)(n³-10n²+22n-13)/n(n³-10n²+22n-13)=(n+1)/n